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Abstract

We generalize here the celebrated Partial Regularity Theory of Caffarelli, Kohn and Nirenberg to
the MHD equations using as global framework the language of parabolic Morrey spaces. This type of
parabolic generalization appears to be crucial when studying the role of the pressure in the regularity
theory for the classical Navier-Stokes equations.
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1 Introduction

In this article we study regularity results for the incompressible 3D magnetohydrodynamic (MHD) equations
which are given by the following system:

— — —

U =AU —(U-VNU+(B-V)B-VII+F, div(U)=div(F) =0,

Q

#B=AB—(U-V)B+(B-V)U+G, div(B)=div(G) =0, (1.1)

U(0,2) = Up(z), div(Up) = 0 and B(0,z) = Bo(x),div(By) =0, € R3,

where U , B: [0,7] x R? — R? are two divergence-free vector fields which represent the velocity and the
magnetic field, respectively, and the scalar function II : [0, 7] x R® — R stands for the pressure. The initial
data Uy, By : R?* — R3 and the external forces F,G : [0,T] x R® — R? are given.

Of course, when the magnetic field B becomes the zero vector, the MHD equations (1.1]) are reduced to
the 3D classical Navier-Stokes equations

U =AU — (U - V)T —~VII+ F,  div(U) = div(F) = 0. (1.2)

It is worth noting here that for the Navier-Stokes equations there are two different regularity theories. The
first one, known as the Serrin local theory [1§], is essentially based in a control of the velocity vector field
of the type Ue (LY LE)joe with 2 + % < 1, and with this assumption it is possible to obtain a local gain of
regularity of the solutions of . One very important feature of this theory is the fact that no particular
restrictions are asked to the pressure p which can be a very general object (for example we can ask p € D').
However, this generality implies paradoxically some constraints and the gain of regularity is only obtained
in the spatial variable as the temporal regularity is linked to some information on the pressure (see Section
1.3.1 of [14] for this particular point).

The second regularity theory, known as the partial reqularity theory, is due to Caffarelli, Kohn and
Nirenberg and it was developed in [2]. In this case the local boundedness assumption is replaced by lo-
cal energy estimates and with some additional hypothesis on the pressure II (usually II € (L{LL);,. with



1 < go < +00) we can deduce a gain of regularity in both variables, space and time.

These two points of view are of course quite different since they rely on different techniques and require
different hypotheses. However it is important to point out that a common treatment of these two theories
can be performed by using the framework of parabolic Morrey spaces Mﬁ 7 (see formula 1} below for
a precise deﬁnition of these functional spaces). Indeed, O’'Leary [15] generalized Serrin’s theory replacing
the hypothesis U € (LPL%)10c by U € (M%) while Kukavica [I0] proposed a generalization of Caffarelli-
Kohn-Nirenberg’s theory using this parabohc framework.

An interesting point of this common framework appears clearly when studying the role of the pressure
in the Caffarelli-Kohn-Nirenberg theory for the classical Navier-Stokes equations, indeed, as it is shown in
[3], the language of parabolic Morrey spaces is a powerful tool which allows to mix, in a very specific sense,
these two regularity theories.

In a recent article [4], we have generalized to the MHD equations (1.1)) the local regularity theory using
parabolic Morrey spaces. The aim of this article is now to generalize these techniques in order to study the
partial regularity theory for the MHD equations.

The Caffarelli-Kohn-Nirenberg theory as been investigated for these MHD equation (see [], []), but to
the best of our knowledge the generalization using parabolic Morrey spaces is new and we find this approach
interesting since this framework admits some important applications.

The plan of the article is as follows: in Section [2| we introduce Elsasser’s variables in order to transform
the initial problem into a more symmetric one and, after some useful notation and results on Morrey spaces
in the parabolic setting, we present our main theorem. In Section [3| we will prove Holder regularity for
suitable solutions of the MHD equations by assuming some controls expressed in terms of parabolic
Morrey spaces. In the remaining sections we will prove each one of the hypotheses assumed in Section [3| and
this task will be achieved in three steps. In Section [4] by introducing suitable averaged quantities we will
prove useful estimates and in Section [5| by an induction argument we will deduce some of the assumptions
of Section [3] The remaining hypotheses will be proven in Section [6]

2 Notation and presentation of the results

The starting point of this work relies in the use of the Elsasser formulation for the MHD equations (see [7])
which enable us to obtaln a more symmetric express10n of the problem considered here. More precisely, if
we define @ =U + B, b=U — B, f F+Gand§ g= F — G, then the original system ([1.1)) becomes

il = AT — (b- V)i —Vp+ f, div(@) = div(f) =0

Ob=Ab— (i-V)b—Vp+7, div(b)=div(G)=0, (2.1)

(0, ) = do(x), div(ily) = 0, b(0,z) = by(x), div(by) = 0

-,

where, since div(i) = div(b) = 0, we have that p = II satisfies the equation

3
=) 3i0;(uiby), (2.2)
i,j=1

—,

and from this equatlon it is poss1ble to determine the pressure p from the couple (i,b). Remark in particular
that the solution (@, b) to ) has the same regularity as the solution (U, B) to ([1.1)).



Let Q be a domain of ]0, +0o[xR3, we assume the following (local) hypotheses:
@,be LPL2 N LIHLN(Q),

€ L{%(Q) with 1 < qo < 3, (2.3)
f. € LL(Q).

We will say that the couple (4, b) € L°L2 N L2H(N) satisfies the MHD equations (2.1) in the weak sense
if for all @, ¢ € D(Q) such that div(@) = dw(qﬁ) 0, we have

(Oyii — Aii+ (5- V)i — fl@)prwp =0,
(O — Ab+ (- V)b — §ld)prxp = 0,

note that if (i, 5) are solutions of the previous system, then due to the expression 1) there exists a pressure
p such that (2.1)) is fulfilled in D'.

The class of weak solutions is too wide for our purposes and we need to reduce the set of admissible
solutions and actually we will only work with a very specific subset given by the following definition.

Definition 2.1 (Suitable solution) Let (i, p, 5) be a weak solution over Q) of equation . We will say
that the (i, p,b) is a suitable solution if the distribution p given by the expression

po= =0l + 181 + Aa’ + o) - 2(V @ d® + [V @ b]?)
—div ((yu\2+2p)b+(\b\2+2p) )+2(f @+ g-b),

is a non-negative locally finite measure on 2.

It is worth noting there that from the set of hypotheses (2.3) we can deduce that u is well defined as a
distribution but we will need to assume its positivity, which is the whole point of suitable solutions.

We still need to introduce one more ingredient which is related to the parabolic structure of the functional
spaces we are going to work with. We consider the homogeneous space (R x R?, d, ) where d is the parabolic
quasi-distance given by

d((t,x), (5,9)) = |t — |2 + |z — ], (2.4)

and where A is the usual Lebesgue measure d\ = dtdx. Remark that the homogeneous dimension is now
N = 5. See [8] for more details concerning the general theory of homogeneous spaces. Associated to
this distance, we can define homogeneous (parabolic) Hélder spaces C*(R x R?, R?) where o €]0,1[ by the
following condition:

’@(tvx) — @(Svy” _ < 400, (25)

[Bllga = sup ;
(ta)#(s.) (|t —s[E |z — y|)

as we can see this quantity captures Holder regularity in both time and space variables.
Now, for 1 < p < g < 400, we define the parabolic Morrey spaces /\/l . as the set of measurable functions
F:Rx R3 — R3 that belong to the space (LYL%),. such that ||90H/\/lf a < +o00 where

1Pl pape = sup ( / / A(t,x ]pd:zdt) : (2.6)
’ (to,z0)ERXR3,r>0 t—to|<r2 J B(zo,r)



Remark in particular that we have M7

Appendix [A]

= LPLE and we will list some useful properties of these spaces in

These parabolic spaces are very useful in the analysis of the properties of the solutions of the Navier-
Stokes equations, hence of the MHD equations and their properties appears to be more and more useful in
the study of some PDEs. See for example [15], [10], [16], [3], [4] and the book [14].

We can now state our main theorem which studies the Holder regularity of suitable solutions of the MHD

equations ([2.1).

Theorem 1 Let Q be a domain of |0, +00[xR3. Let (i, p,b) be a weak solution on 0 of the MHD equations
(2.1). Assume that

1) (4, 5,p,ﬁ§) satisfies the conditions ,
2) (ii,p,b) is suitable in the sense of Deﬁm’tion

10
7 Ta

S S 10 .
3) we have the following local information on f and g: 1o(t,z)f € M, and 1o(t,x)g € My’ * for
some Tg, Tp > % with 0 < a < 1.

There exists a positive constant €* which depends only on 1, and T, such that, if for some (to, xo) € €2, we
have

1 - 5 -
limsup// IV @ i]* + |V @ b|?dsdx < €, (2.7)
r Jto—r2,to+r2[x B(zo,r)

r—0

then (@,b) is Holderian of exponent o (in the sense of ) in a neighborhood of (tg, xg).

Some remarks are in order here. First, since we are assuming some control in the pressure (recall that
p € LI’LL(Q)) we can obtain regularity results in time and space variables. Second, we remark that the
second parameters 7, and 7, that define the Morrey spaces of the forces f and ¢ are linked to the exponent
« of the expected Holderian regularity and this is somehow natural as the information given by the external
forces is not involved in the nonlinear terms and must be taken into account. Finally, we note that

3 Proof of the main Theorem

The strategy of the proof of Theorem [I| is based on regularity results on solutions of parabolic equations.
Indeed, following a classical result given in the book [I1] we have the following lemma (stated using parabolic
Morrey spaces and borrowed from Proposition 13.4 of the book [14]):

Lemma 3.1 (Holder regularity) For v, P [0, +00[xR3 — R3 two vector fields, we consider the follow-
mg equation

Ut z) = Av(t,x) + ®(t, ),

o(t,0) = 0.

Assume moreover that we have the information P e Mﬁ%qo with 1 < pg < g9 < +o0o and q% = Q*TO‘,

0 < a< 1. Then the function U equal to 0 fort <0 and to

t
ﬁ(t,:n):/ =A% (s, ) ds,
0

fort >0, is a solution of equation that is Holderian of exponent o with respect to the parabolic distance

.



In order to apply this lemma, we need to transform our initial problem (2.1) and for this we proceed as
follows: in a first step we fix the point (¢, z¢) considered in the hypotheses of Theorem [I| and we construct
two auxiliary non-negative functions ¢, : R x R® — R by the conditions ¢, € C§°(R x R?, R)

S’LLpp(QO) C] - %) %G[XB(Oa %))

(3.2)
SUPP(TZJ) C] - %a i[XB(Oa %)7
and such that
Y= 1 on ] - évé[x‘B(()?%)v
(3.3)
Yp=1lon]— Tlﬁ’ 1—16[><B(O, 1).

Remark in particular that ¢» = 1 on the support of ¢ and thus we have the pointwise identity o = ¢ in
R x R3. Now, for a point (tg,xo) that satisfies (2.7) and for a fixed Ry such that 0 < R3 < to we define

t—to T — X0 -,

o(t,x) = (R%’ RO) and U = o(d+b), (3.4)

as we can observe, the variable U is defined on R x R3 and its support is contained in the parabolic ball of
the form

QRO (t(], x(]) :]to — R(Q), to + R%[XB(.CI}Q, Ro). (3.5)

When the context is clear, we will write Qp, instead of Qg (to,zo) and for usual (euclidean) balls we will
write Bp, instead of B(z, Rp).
We will assume moreover that Ry is small enough to grant that

Qur, (to, zo) C €. (3.6)

Note now that, since 0 < R2 < tg, we have u (0,2) = 0 and we obtain the following equation

UL, x) = AU(t, z) + D(t, ),

) (3.7)
U(t,0) = 0,
where
3
B = (90— A)(@+5) -2 (30) @@+ 1)~ 6 (G- V)T + (@ V)B) ~20(Vp)+6([+7).  (38)
(@) = (0 P (@ (©)

Thus, in order to apply Lemma we only need to proof that this previous function o (which is supported
in the ball Qr,) belongs to the Morrey space Mg‘;;qo with 1 < pg < ¢p < +00 and % = 27?“, 0<a<l1,and
this will be possible as long as we have some interesting estimates of the constitutive terms of . In this
sense we have the following proposition:

Proposition 3.1 Fix a point (to,xo) that satisfies the hypothesis of Theorem and fix the radii

0< Ry < R1 < Ry < iy,

-,

and the associated parabolic balls Qr, C Qr, C Qr,. Consider (i, p,b) a suitable solution of MHD equations
over £ in the sense of Definition . In the framework of the general assumptions of Theorem
assume moreover that we have the following information:



1) 1gg,, ]lQR2EE Mg’;‘) for some 15 > %,
2) 10,V @i, 1g, Vobe Mp with L =1 +1

3) ]lQRlﬂ” HQngE Mi’g wlth % TL S T’

4) for all1 <i,j <3 we have 1@31%(1&'%) € Mf,’; with pg < p < +00 and gy < q < +00,

S 10 . 10
5) Lgp,f € Mtw’T and 1o, g € M, " for some T4, T > 25

2-a’
then we have that all the terms of , and therefore the function o itself which is supported in the
2—a

parabolic ball Qr,, belongs to the Morrey space Mf’%qo with 1 < pg < g and % < qo < 5 where qio = &3¢
with 0 < a < 1.

Remark 3.1 Note that Theorem [1] follows at once zf we have the conclusion of this proposition: we only
need to apply Lemma 1 to obtam that the function u defined in 1s Holderian of exponent o and since
the information over @ and b is symmetric, it is easy to obtain that the couple (i, b) is itself Hélderian of
exponent «.

Remark 3.2 The upper bound 1 < py < & £ given in Proposztzon 1s technical and ensures the condition
po < qo. Note in particular that in Lemma [51] the Holder regularity exponent 0 < a < 1 is only related to
the parameter qy and not to py.

Remark 3.3 In the hypotheses 1), 2) and 5) we have assumed a control over the larger parabolic ball Qr,,
while in assumptions 3) and 4) we only need a control on the slightly smaller balls Qgr,. The main reason
of this fact is essentially technical, indeed we will see later on (see Sectz’on@ how to deduce conditions 3)
and 4) from 1), 2) and 5) and we need to introduce different supports for the auxiliary functions involved.

Proof of Proposition Assuming for the moment the information stated in the points 1)-5) we will
study each term (a)-(e) of (3.8]) separately.
(a) Since we have by the point 1) the information 1, @, 1q,, be ME’ 70 for some 1y > 5, then it is easy

to obtain that (0;¢ — A¢)(u + b) € ./\/lpo’q0 with 1 < py < go < +00 and L o= T’ 0 < a < 1. Indeed,
since ¢ is a smooth function, then from the first point of Lemma, and from Lemma we have

[0, @16 = 20)@+ D] 00 < CllLar, @+ Dllagun < Cllian, @+ Dy < +oo

where 1 < py < % and 1 < py < g9 < 79 and these conditions are fulfilled since we have % <q<5bH
and 5 < 9.

(b) For the second term of (3.8) we use the information given by the point 2) of the hypotheses of Propo-
sition Thus, by the Holder inequalities in Morrey spaces (see Lemma [A.1)) we obtain

[0 @i+ 0| gy < WL, DiblL g (HHQROauHMz 2 + 1105, bl 22 )
1 1 1
where o + 5 < Po a1 e g

oo |

Note that since 1 < pg S , the condltlon p1 > 3 is enough to satlsfy = + < . On the other hand,

and = + L1 =1 moreover, by Lemma we have for 7 > ¢o:

Mpo 40 — (H]]‘QR V®UHM2TI + H]]‘QR v®bHM2‘rl) < +OO

since q% = %Ta we should have qi + < 2z == but the relat1onsh1p === + % 1mphes that ¢; must be
big enough to verify q% I_TO‘ — —0 (Whlch is possible as long as we have the condition TO 2 > o which

can also be seen as 79 > 12-).



(c) We study the term Hqﬁ ((5 V)i + (i - ﬁ)g)‘ . Since 1 < pg < ¢ and 3 < gy < 5, by Lemma |A.2

P0-490
M

by the Holder inequalities in Morrey spaces and using the information of points 2)-3), we have:

o < Clltne (@ D1+ @95 o,
o(||nQRlb||M;,anQszmuwgl (3.9)

18n, @l21Lan, V¥ @Bl 2 ) < +o,

IN

where we have + + L < but since + = 22¢ and - = L 4+ 1 the previous conditions is equivalent
4 1 q ’ qo 5 1 T0 57

to % + Tio < 1_?0‘, which is exactly the condition stated in the point 3).
(d) The term that contains the pressure can be treated as follows: by the formula (2.2)) we have

1
= A Z 0;0;(u;bj), so we need to study the quantity

3,7=1
ﬁ

but since we assumed in /) that 1, — 8 0;(uibj) € Mfg with pg < p < 400 and ¢p < q < 400, then
by Lemma [A.2] we obtain for all 1 <4, j S 3:

V8,0;
(2s)

(e) For the last term of , we need to study [¢(f + g)HMpo a0, but since 1 < pg < 2 and since
qo = 2 ~ < Ta, Ty, then from the first point of Lemma and from Lemma we have

3
16Vl a0 <

2,j=1

9

P0-490
My

vV 8;0;
Lgor, —7A] (uibj)

< +00.
M

P0-490
M

—

167+ Dllagzon < Clligy, (F+ >HM7WW,,}<c(un%fu o+ ol 0 ) < +oc.

This completes the proof of Proposition |

Now we need to study the information that was taken for granted in this proposition, i.e. from the

general hypotheses of Theorem [I| we will prove that we actually have the points 1)-5) stated in Proposition
B.1

Remark 3.4 Note that in Proposition we do not state any particular assumption on the pressure p.
However, as we will see later on, in order to obtain the hypotheses 1)-5) of this proposition we will need the
information p € LI LL(Y) with qo > 1 as stated in the general framework .

4 Local bounds

Remark that all the information assumed in the hypotheses of Proposition is presented in the framework
of Morrey spaces, thus to carry on our study it will be useful to fix some averaged quantities: for a point
(t,z) € Qr,(to,x0) and for 0 < r < Ry, following the notation (3.5) we consider the parabolic ball

Qr(t,x) =]t — r2t+ T2[XB(JJ,T‘),



and we define the following dimensionless quantities (in the sense that they are scale invariant):

1 - 1 -
Altg)=  sup - /B ol P, at,z)= sup - / [ Bslay

t—r2<s<t+r2 T t—r2<s<t+r2 T

1 5
aﬂz/y ¥ @ ii(s, v) Pdyds, // ¥ & B(s, ) Pdyds,
r t37) 'r
3 3
(T, x) =3 //T(m (s,y)|°dyds, (t, ) =3 //T b(s,y)|>dyds, (4.1)
N o 10
Di(t) = = / [ Al Fayas, ite) =5 ([ Jatssu) Fayds,

Qr(t,x) rT r(t,x)

Pr(t, x) = 5% qu // (s,y)|*dyds, with % <qo < %

The aim of this section is to obtain two inequalities (given in Proposition and in Proposition below)
that involves all the previous quantities. These inequalities are necessary to apply an inductive procedure
that will lead us to some of the controls assumed in Proposition This inductive argument will be dis-
played in the next section.

In the following lemma we exhibit a first relationship between some of the terms in (4.1)) that will be
used in Proposition

Lemma 4.1 Under the general hypotheses of Theorem[d], for any r > 0, there exists an absolutely constant
C, which does not depend on r, such that we have

i 1
C? < C(A+B,)%, and ~F < Clar+B,)2.

Proof. We only detail the proof of the first estimate as the second follows the same computations. Thus,
by the definition of C, given in (4.1)) and Holder’s inequality, we have

1 1
CP = — |l s < o ||u|| 10
" r2 (@) ri (Qr)

2 3
Now we remark that we have the interpolation inequality ||(t, ')HL%O(BT) < ||u(t,-) EQ(BT)Hu(t, ’)HZG(BT) and

applying the Holder inequality with respect to the time variable, we obtain
I8 ) < V@l
For the LZLS norm of i, we use a classical Gagliardo-Nirenberg interpolation inequality (see [?]) to obtain
. > L. = |
il z2rs o,y < C (HV ® 1l 1212(q,) + T,H“HL%L;(@)) <C (HV ® Ul 2r2(Q,) + HUHL;’OLQ%(QT)> :
and using Young’s inequalities we have
la

2 N 3 3
s Cllillzerz a0 (”V Dl a0 * ”“”22%%(@»)

< O (I@lizrz@n + IV @ l30,) ) - (4.2)

oo

Noting that ||| pec2(q,) = 7‘2Ar and |V ® Ul 2120, = 7“2BT, we finally obtain C3 < C(A, + B,)? and
Lemma [{.1] is proven. [

We give now the first general inequality that bounds all the term defined in formula (4.1)).



Proposition 4.1 (First Estimate) Under the hypotheses of Theoreml for0<r<§ &, we have

2 2 1
A, + B, —i—ar—kBTSC 5 (Ap +ap)+C <(Ap+ap+ﬂp)8p2+(ap+Ap+Bp)55>

+c’i7>,;70 (A4 + B,)% +(ap +5,)7) (4.3)

)

Proof of Proposition To obtain this estimate we will use the local energy estimate satisfied by
solutions of equation ({2.1)). Tt is crucial to choose here a good test function and following [?] we will consider
the non-negative function w € C§°(R x R3) defined by the formula

9 -t y—=x s—1 p _ Ry
= — e )
(S y) r ¢< p ) P >9< 2 )g(4r2+t—s)($ y)u 0<r< 9 = 9 (4 4)

Where ¢ € COO(R x R3) is a non-negative function supported on | — 1,1[xB(0,1) and is equal to 1 on
] — 1,3[xB(0,3) and 6 : R — R is a non-negative smooth function such that # =1 on ] — oo, 1[ and § = 0
on |2, 4o00| and g¢(x) is the usual heat kernel.

D=

1 e
oL <Dw<A LB} 451 a4+ By)

We gather in the following lemma some properties of this test function:

Lemma 4.2 Recalling that 0 <7 < § (and thus Q.(t,x) C Q,(t,)), we have

e w is a bounded non-negative smooth function and its support is contained in the parabolic ball Q,(t,x)
and for all (s,y) € Q,(t,x) we have the lower bound

C
wis,y) = (4.5)
o for all (s,y) € Q,(t,x) with 0 < s < t+r? we have
C
wls) < 2, (4.6
o for all (s,y) € Q,(t,x) with 0 < s < t+r? we have
- C
|VOJ(S,y)| S ﬁy (47)
e moreover, for all (s,y) € Q,(t,x) with 0 < s <t +r? we have
2
”
(05 + A)w(s,y)| < C;- (4.8)
See the Appendix [B| for a proof of this lemma.
Now, with this particular test function w, we can construct the following local energy inequality
L (e + ) wtrpay+2 [ [ (19 @) +19 0 5 n)R) (s )duds
R3 <7 JR3
< [ [ (1P + s, ) @0+ Ao, y)dyds
s<t JR3
[ s P+ 20(s,)) B Do) duds (4.9
s<T
+/ / b(s,y)I* + 2p(s, y)) (@ V)w(s,y)dyds
s<T JR3
w2 [ [ (Fsw) o)+ s.0) - Bl w)duds.
s<t JR3



Now, we define the quant1t1es p and (|62 )p as the following averages:

(|z
12
U 1% dy, b t,x) / 1% dy, 4.10
() (t, / (2)0(t.2) = o (4.10)
and since @ and b are divergence free, for any test function ¢ compactly supported within B(x, p), we have
[ @G-St =0 and [ (5, (@ Fo(t.)dy=o.
B(z,p) B(z,p)

these facts will allow us to introduce the averages (]@|?), and (\glz)p in inequality 1} in order to use
Poincaré’s inequality. Indeed, we can rewrite the previous local energy inequality in the following manner

L (il + e nR) sy +2 [ [ (19 @) + 19 5n)) ol )dyds
< [ (1) + s, ) @+ At )y
[ QiR = (a),) - Fyste.g)ayds

+/8<T /R3 (|E(S,y)’2 _ (|5|2)p) (@ - V)w(s,y)dyds

w0 [ [ (Tl o)+ o) Hs)) (o) duds.

Using the properties of the test function w stated in Lemma we have:

1 . 1 . L -
» [ PPy [[ 9@ s + 19 @ bs) Pdyds
Qr

r

r

r? o -
<ol / / (s, 9)|? + 1B(s. ) Pdyds
P Q,

()
c .
—1-2// Hu(s,y) (%) }|b s,y)|dyds
r Q,

(a7)
53 [ (B0 = G e, s (@11
(IIT)
#53 [ wtes (60,1 + s ) s
(1v)

+ S [ 1fs it )l +10s, w11 vl dyds.

V)

We will study each one of the previous terms separately. The first term on the right-hand side above is easy
to bound: indeed, by definition of the quantities A, and «, given in (4.1f), we get directly

P™ \t—p2<s<t+p2 P JB t—p2<s<t+p2 P JB

r2 1 . 1 - r2
<I>s02< - / (s, y)Pdy +  sup / |b<s,y>|2dy> <Oyt (112
p p

10



The terms (1) and (I1]) can be treated in the same fashion since we have symmetric information on the
functions # and b, so we only study one of them: indeed, for (I7) we have

t+p?

1 i} I | ) ) B}
) //Qp ||@(s,y)|* = (|@]*),] [b(s, y)|dyds < = /tp2 (s, )| — (|u|2)pHL%(BP)”b(S’ M rs(s,)ds,

thus, by the Poincaré inequality we obtain

C t+p? N 9 .
(I < — t IV(a(s, ) s,)llb(s, )3 (s,)ds

r2 _p?
C t+p2 . .
< 742/%02 [5(s, M L2 IV @l L2, 16(Ss )| L3(B,)ds

c. . - -
< T7||U|’L§L3(Q,,) V& UHL%Lg(Qp)HbHLtBLg(pr

where we used the Holder inequality in the time variable in the last estimate. Now we remark that we have
the following bounds for ||| ;s 12(q,)» IV @l p212(q,) and [[b]l 13 13(q,) (recall the expressions given in ):

- 1., 5 1 . 2 5 1
lillzorz(q,) < Cr2llullLerz(q,) < Cps sup / |i@(s,y)Pdy | = Cps.AZ,
t—p2<s<t+p? P JB,

ol
o
=
o,

=

=
+eo

b(
w

)

I

)

=2

= - 1
IV @220, = p2B

we obtain then
1

1 2 11
(1) < 0L Al Bif < 0% alB 0, + )

D=

where we used Proposition to estimate the term 'yg . Since the same computations can be performed for
(IIT) we have

2 11 1 11 1
i+ (1) < % (AbBha, + 80t +ash (4, + )t
2 1 1

We study now the term (IV') of (4.11). Using Holder’s inequality, we have with qi qi, =1:
0

C - C
= — 7 < — all
V=52 [ el (sl + ) dos < Sl (1., Pt )

0

Since we have Ucgp<s sand 3 < ¢ < 1 we can write

5(5-2) (117 b
v pll o p 0 <“ i oo Tl >
(Iv) < 2” ||L0 (Qp) I HLtf"z(Qp) | HLt?Z(Qp)

5 v L
Since by definition (see expression (4 1.) we have p(% 2)73,5’0 = |Ip|| L% (q,) and since by l' we have the

1 1
estimates ||| 10 < sz(.A + B,)z and 15]] 10 < Cp2(a,+ B,)2, then we obtain
L5 (@) L5(Qr) e

(IV) < szP,flo ((A +B,)7 + (a, +Bp)%> : (4.14)

11



Finally for the last term (V') of (4.11]) we have by the Holder inequality

fu+gbdyds<0<f + g >
//|||| 3118 171,38 o, 171,32 o+ 180 o VBl

Recalling the control [|a| 1o <C (HﬁHLQX’Lg(QP) +|Ve® U||L§L%(Qp)> (see inequality 1} and since by

Lt,z(QP)
- 1 7
‘D we have the identities ||d]|Ler2(g,) = p%Aﬁ, IV ® 220, = p%Bﬁ, p%D,}O = |If] 10(@) and
P
7
péé,}o = |7 :To( X we obtain:

(V) < Cg <D57“ (A, + By) (4.15)

SIS
+
(=%

AR
Q
>
+
=)
?—/
[l
N———

Gathering the estimates (4.12]),(4.13)),(4.14) and (4.15)), we have

1 . 1 . -
+ [ 1P Py [[ 90 s + 19 @ bso)Pdyds
Qr

T

2

2 1 1
< C%(Ap-i-ap) +C% ((Ap+ap+5p)802 + <aP+AP+BP)BPQ>

Since this estimate is uniform with respect of the time variable of the left-hand side, we finally can write:

+C0P (4 + B + (o + 3)3)

N

T 1 i
+Of( F A+ B +65 (0 + )

r2 1 1
A, + B, +ar+5r<c (A4, +a,,)+c” <(Ap—|—oz,,+ﬁp)83+(ozp+Ap+Bp)6§>

)

and Proposition is proven. [

+ C’LP;TO ((Ap +B,)7 + (a, + ﬁp)%)

“s\ﬂ
[SIE

+c? <Dw(A +B,)E + 5% (p + By)

The second estimate that we need relies in a detailed study of the properties of the pressure and following
Kukavica [?] we have:

Proposition 4.2 (Second Estimate) With the quantities defined in , under the hypotheses of The-
orem and for 0 <r < g < % we have the estimate:

P<C <(f)3_q° (A% + (p)P> - (4.10

In order to obtain the previous inequality we will first study a general estimate stated in the lemma below
and then (4.16)) will follow by a scaling argument.

Lemma 4.3 For 0 < o < % and for a parabolic ball Q,, there is a constant C' such that whenever p €

3

qu Qo) for 1 < qo <3 3 and Ap = — Z 0;0;(uibj) in Q, then we have the following control
ij=1
191120 0y < € (7 Nl =200 IV @ Bll212(00) + 0% P10 1)) - (4.17)

12



Proof. To obtain this inequality we introduce i : R — [0, 1] a smooth function supported in the ball By
such that 7 = 1 on the ball B3z and 1 = 0 outside the ball B1. Note in particular that on @), we have the

identity p = np. Now a straig}ftforward calculation shows thai we have the identity
3
—A(np) = —nAp + (An)p — 2> 9:((dm)p),
i=1

from which we deduce the inequality

3

(—nAp) (An)p 3:((9m)p)
Pl o0 0, = 7Pl 00 0y < [ +H 123 || 24@mp) (4.18)
Lt,x(Qo) Lt,x(Qa) (—A) L;IOT(QO) (—A) ngg(Qa) ; (_A) Lg%(Qa)
(") (IT) (IT1)

For the first term of (4.18)), since Ap = Z 0;0;(u;bj) on Q, if we denote by N; ; = u;(bj — (bj)1) where
t,y=1

(bj)1 is the average of b; over the ball of radius 1 (recall the definition (4.10))) since @ is divergence free we
3
have Z 0;0; (u;b; Z 0;0;N; ; and thus we can write
hj=1 t,j=1
—nA 12 1 >
([) = w <C 5(q0 3) 7(77 Z alajNZ])
(_A> qo _A) ii—=1 3
Lia (@) o L} Qo)
< 0ol d) Z (0:0;(nNij) — 8;((95m)Nij) — 05 ((9im) Niz) + 2(9;0;m) Ni5) 3 (Q(% 19)
i,7=1 t o

Denoting by R; = \/% the usual Riesz transforms on R?, by the boundedness of these operators in Lebesgue
spaces and using the support properties of the auxiliary function 7, we have for the first term above:

0;0;
N; ;(t < |IRiR;j(nN;,; < ClnN;;(t, ), 3
[R5, S RN, 3 ) S IV,
< Ot Mz W)~ @)alascan
< Ot Mol © 5t Mescan

where we used Holder and Poincaré inequalities in the last line. Now taking the L-norm in the time variable
of the previous inequality we obtain

-

0;0; 1., "
|2%; < ot )30 I¥ © 5 Mz o (1.20)

(—A) 77Nw( )

3
L. (Qo)

The remaining terms of (4.19) can all be studied in a similar manner. Indeed, noting that d;n vanishes

on B3 U B¢ and since B, C B1 C B3, using the integral representation for the operator (_&A) we have for
5 5 2 5

13



the second term of (4.19)) the estimate

| 25 @) ey SO g (@mN) e o
< 0o’ / LY (0N (1) dy
(2<lyl<iy [z — Yl Loo(B)
< Co?|Nij(t, )l sy (4.21)
< Co?llui(t, )2 lIbi(t. ) = (0)1llr2(s)
< CWU:')HL?(BI)’W@@g(t7')”L2(Bl),

where we used the same ideaus3 as previously and the fact that 0 < o < 1, and with the same arguments as
in (4.20)) before, taking the L2-norm in the time variable, we obtain

O; 1, R
“(—A)((ajn)Ni’j)(t") g =Cosfat e rzollV ® 6t )2z (4.22)
L, (Qo)
A symmetric argument gives
9; 1, S o
H (—4) ((Om)Nis) 4 o) < Coslut, ) erznllV @bt llzr2(0.): (4.23)
t,x a

C

and observing that the convolution kernel associated to the operator ﬁ is o] following the same ideas

we have for the last term of (4.19)) the inequality

(0;05m)N; 1 S -
HH < Coslult, )|l pgerz @IV @ bt )l z212(q)- (4.24)

(=4)

3
L?4(Qq)

Therefore, combining the estimates (4.20]), (4.22)), (4.23) and (4.24)) and getting back to (4.19) we finally
have:

—nAp 5(L-2)/ 1, -
() = (—A) , < 0ol 3)<U3Hu(ta')||L§°L%(Q1)Hv®b(tv’)HL§L§(Q1))
(=4 L4 (Qo)
5 _3. ., -
< o0 ) |pgerzn IV @b, )l 22 ) (4.25)

We continue our study of expression (4.18) and for the term (1) we first treat the space variable. Recalling
the support properties of the auxiliary function n and properties of the convolution kernel associated to the

operator ﬁ, we can write as before (see ):

H (An)p(t, -)

3 3
(—A) < Co o Hp(t7 ')”Ll(Bl) < Co o Hp(t7 ')HL‘?O(Bl)v

L0 (B,)

and thus, taking the L%-norm in the time variable we obtain:

(An)p(t,-)

3
(—A) < Cow ||pHng:(Q1) (426)

o-|

L{%(Qo)

For the last term of expression (4.18)), following the same ideas developed in (4.21)) we can write

3 3
(@in)p(t, -) < Cowollp(t, )Ly < Co®lpt, )L s),

L90(By)

14



and we obtain

9i((9n)p)
(=8) e @0

Now, gathering the estimates (4.25]), (4.26]) and (4.27]) we obtain the inequality

3
(111 = | < Cow |l (4.27)

i73 N = g 3
[Pl @2 < € (6%l 220 IV © Bllizrzien + o™ Ipll o)) -

recalling at this point that since 1 < ¢y < %, we have q% —-1< q% — 3 and since 0 < 0 < % we have
5 _

2 _
g ? <ogw ! and we finally obtain the estimate
lfl N = g 3
||p||L§fJI(Q(,) <C (U"O il zee L2 (@ulIV @ bll 212, + 0 ||p||L§gC(Q1)) ;
and the proof of Lemma [4.3] is finished. [ |

Proof of Proposition Once we have established the estimate (4.17)) it is quite simple to deduce
inequality (4.16]). Indeed, if we fix 0 = £ < % and if we introduce the functions p,(t,z) = p(p?t, pz),

U,(t,x) = @(p?t, px) and gp(t,m) = b(pt, px) then from 1} we have

hS)

0

2 3
r . S5 - 7\ %0
ol 0z < € ((p) Iz t2@0ll¥ @ Blizrzan + (%) ool Q1)> ,

and by a convenient change of variable we obtain

3
r

5 2-1
_5 r\ w0 -
IPlleg, @np =€ ((p) p 2l Lo r20,0P IV © ol 2200, + (>

_5
P p prHngc(Qp)> .

Now, recalling that by (4.1)) we have the identities

1

5 _9 1 1 . 1 1 — -
rao e = HpHngc(Q,.)a p2A; = HUHL;”Lg(Qp) and p2f7 = HV®5HL§L§(QP)7

we obtain
1 o\ 2 ) N2 e 1
P < C (7) a0 ( A,B,)2 + <> P,
r P
and we finish the proof of Proposition by taking all this inequality to the gg-power. |

5 Inductive argument

In Section [ we have proven the following relationships between the averaged quantities defined in the

expression (4.1)):
2

1 1
A + B, +ar+5r§0 5 (Ap ‘|‘O‘p)+0 <(Ap+0‘p+5p)83+(O‘p+Ap+Bp)55>

) o

+ c’ipg? ((Ap +B,)7 + (a, + ﬁp)%)

“s\ﬂ
[SIE

ol <Dw(A +B,)E + 5% (p + By)

15



In this section we will see how to use these relationships to obtain some of the local Morrey information
assumed in Proposition Indeed, we have:

Proposition 5.1 Let (i, p, I;) be a suitable solution of MHD equations over () in the sense of Definition
[2.1. Recall that in the framework of the general assumptions of Theorem[1], we have the following local infor-

S S i
mation on the pressure p € L% () with 1 < qo < % and on the external forces f and §: 1q(t,z)f € ./\/lt?z’m
and 1q(t,x)g € Mt7’ v for some 1. = min{r,, 7} > % > g with 0 < o < 1.

Define now a real parameter 1o such that % < 719 < bgo and 2 — T% + T% > 0. There exists a positive
constant € which depends only on 14,7y and 19 such that, if (tog, o) € Q and

1 . L.
limsup// IV @i(s,y)|>+ |V Qb(s,y)|2dyds < €, (5.2)
to r2 t0+T2[><B(LI:0, )

r—0

then there exists a (parabolic) neighborhood Qg of (to, xo) such that
— 3,70 3 TO QOv 2
Lopu € My,7, ]lQRb eM;," and lgppe M;,*.

Note that the conclusion of this proposition gives exactly the information on # and b that was assumed in
the first point of Proposition

Proof of Proposition By the definition of Morrey spaces given in (2.6]), we only need to prove that
for all small 0 < r < Ry and for all (¢,z) € Q,(to, xo) we have the following controls

QO)

// (s, )| + |b(s, y) > dy ds < %) and // p(s,y)|®dyds < Cr =0, (5.3)
r(t,z) T(tm

In order to obtain these estimates, we will implement an inductive argument using the averaged quantities
defined in (4.1)) and the inequalities (5.1)) obtained in the previous section. Indeed, in a first step, we remark
that by Lemma we can write

// i(s,9)|> + [6(s, y)|> dy ds < Cr*(A, + B, + ar + ;)2 (t, ),
rtw)

moreover, since we have the identity 75~29P,(t, z) = ||p||“ 170, (Q,) e see that in order to obtain || for all

small 0 < 7 < Ry it is enough to show the estimates

(A 4+ By + o + 5p)(t,x) < cr?" %) and Pr(t,x) <Cr 20001=75).

Let us now introduce the following quantities:

Ar(tv l‘) = 2(1_i) (“47” + BT + o + /Br) (ta .CL‘) and Q’r‘(tv IE) = mpr(ta .’E), (54)

again, to prove ([5.3) we only need to show that there exists 0 < k < 1 and py > 0 such that for all n € N
and (t,z) € Qr,, we have
AK”PO (t,l‘) <C and Qf-cnpo (t,x) <C, (5.5)

and the whole idea here is to use an inductive argument that ensures that we have these two previous esti-
mates for all radii of the type x"pg > 0. This idea will be implemented in two steps by studying separately
each one of the quantities of ([5.5)).

16



In order to simplify the arguments, we shall also need the quantities:

1

B.(t,2) = (B + Br)(t, ), Pr(t,2) = — =5
r 0

Pr(t,x), D,(t,z) =

<D10 45 ) (t,2).  (5.6)

3
With these new quantities, we can rewrite the two inequalities of expression (5.1)) as follows

10 10 1

r\© P\ A gE oy () pi P\ 2452
< z P P oAz 4 (P 0T > '
A_O((p) A+ (2) " aBi(2) TRpai+ (2) 0 DA (5.7)
5
p 3_7 r q0(1+%)72
< — . .
PT_C<<T) " (A,B,)% (p) P, (5.8)

Observe that these two estimates essentially give us the estimate for i, b and p within the (small) parabolic
ball @, in terms of u, b and p within the (larger) parabolic Q.

and

We define now a new expression that will help us to set up the inductive argument:

2

O, (t,z) = A,(t,z) + (H5q°(%‘”P,,(t,x))% with k=_ <1, (5.9)
p

and we will see how to obtain from (5.7 and (5.8]) a recursive equation in terms of @, from which we will
deduce (5.5)). Indeed, we have the following lemma:

Lemma 5.1 For all0 <r < g and for p small enough we have the inequality
1
O, (t,z) < §®p(t,m) + €, (5.10)

where € is a small constant that depends on the information available on the external forces f and g through
the quantity D, given in @

It is worth noting here that since 0 < r < p this inequality expresses a control of the quantities A,., B,., a., By
and P, on small domains through the information on larger domains.

Proof. As announced, this inequality relies on the controls (5.7]) and (5.8) obtained previously. In order to

2 _
construct ©, we first multiply expression lb by 159005 1), we take the q%—power of it and then we sum
the resulting inequality to 1) and we obtain (recall that k = %):

2

67" = Ar+(KSQO(%_1)Pr(t7$))%

10 10_4 1 0_y = 1 10 3 94,5 5 1
< C(k0A,+r70 ABj+k70 PPAS+k “p 0 eD,AS

ro (w0

As it is clear from the definition of @, given in (5.9 that we have A, < ©,, we can write

(A B )2 _1_,%780 —4qo— 2Pp>qo‘

10 10_y 10 4+5_5 1

®, < C|wv0,+rn *BIO,rv Pq°A2+nTo DAL
) (a1

15¢ 15¢q
+C </<;TOO_5qO_3(Apo)qQO + FéTOO_MO_QPp) " . (5.11)




We now study the terms (I), (II) and (/II). The first one is easy to handle since we have

1 2

L 1 10 11y L 11y 1 10 11 11y 2
ko PRA; = KT 4(/15(70 2)P,‘§0 x k270 A ) < K70 4(/@10(2 To)Ap+/<alo(To 2)P§°>
2 1 2
< K <Ap + (n&m(%_ )Pp) q0> < KO, (5.12)
For the term (/1) of (5.11]) we simply write
10 5 5 10 5 _5
K70 3/) +2 TCD Az < roT0 3p +2 (D2 +A,) <k 3p2+TO 7o (D,%Jr@p). (5.13)

The last term (I11) of (5.11) is treated in the following way.

15 a0 30 6 10 4 2 _ -
</<c “(A,B)) 7 45 o _4q0_2Pp> Y <o </<&TO_10_‘10Apo+ ko2 (/15"0(70 Pt :c)>q0>

4

30 _19_6 10 9
< Crn " qOBp®p+C’/§TO+2 0 @,. (5.14)
Plugging estimates (5.12)), (5.13)) and (5.14) in inequality (5.11]) we obtain
10 1 10_g 945 _ 5 10_3 9,5
e, < C TOG)p—}-nTO BgG)p—f—/i@p—i—Kﬁo p- o TCD + K70 “p 0 76(9
30 _19_6 10,9 4
+ K70 10 qon@p—FnTo—l-Q qu)p)
10 10_ 4 1 10_ 5_5 30 _ 10 9 4
< C’</<No + K70 4B3+/<;+nfo 3p2+fo Te 4+ K70 10= QOB + K70 2 )(Bp
+Ck T D2, (5.15)

At this point we remark that due to the hypothesis (5.2)) and to the definition of quantities B, and /3, given

in (4.1) we have

limsup B, = lim Sup(B + B,) < 2€,
p—0 p—>

and thus, although we have 0 < Kk < 1 and % —4<0and % — 10— q% < 0, then the terms

10 . 0_10-56
kT "Bj and K0 0B,

can be made very small if p is small enough. Moreover, since by hypothesis we have 2+ 3 — 3 > 0, then the

10_ 23
term K “p *T7 7% can also be made small. Finally we observe that 10 s +2—-->0 Wthh is equivalent to
10 4
106:370 < qo, but since 1 < ¢qp < 3 and = < 70 < 940, then this condltlon is fulﬁlled and the term s ">

can be small if & is small We also observe that by (5.6) and by the definition of the averaged quantities
D, and 3, given in we have that D, is bounded and controlled by the Morrey norms of the external
forces fand g Thus since 2 + % — ;56 > 0 the term

10
10_g S5 _5
K0 p + D2

can also be made very small. With all these observations, the inequality (5.15)) can thus be rewritten in the
following form, provided p is small enough:

O, (t, ) < ~©,(t,z) +¢,

N

18



and Lemma is proven. [ |

With this equation at hand we can obtain the first estimate of (5.5)). Indeed, let us first notice that for a
fixed radius 0 < p < Ry and since we have Qur, (to, zo) C 2 (recall formula (3.6))), by the hypotheses given
in (2.3) we have the bounds:

6l oo 2 (@, (t0,20)) < il Leor2(0) < +00, IV @ | £2(Q, (to,z0)) < IV @l p212(0) < +00,

and HpHLZOLgO(Qp(tO,zO)) S ||P||L§0L30(Q) < Fo0.

Now, by the definition of the quantities A, (to, o), B, (to, z0), a,(to, zo) and B,(to, o) given in (4.1) we have

12 V @ |2
pAp = 1T 120,100y PBo = IV @ @7 120, (10,000
=19 = 12
pop = 0l1F e 120,100 PBr = IV @bl e 12, (t0.20)):
and p572q073p = HpHLfOLZ‘)(Qp(to@O))’

and thus we have the following uniform bounds

sup {P-Ap(to,ﬂfo), pBy(to, x0), pay(to,xo), pBy(te, o), P5_2q°73p(t0,$0)} < 400,
0<p<Ro
from which we can deduce, by the definition of the quantities A ,(t9, o) given in (5.4) and P ,(to,zo) given
in ((5.6)), the uniform bounds

3-10 5—gqo(1+2)
sup p~ 0 A,(to, x0) < 00 and sup p 0P, (to, x9) < 400. (5.16)
0<p<Ro 0<p<Ro
Thus, for a fixed 0 < pg < Ry we have that the quantities A, (to, o) and P, (t9, z¢) are bounded. Then
the quantity ©,, defined by expression ([5.9)) is itself bounded and if pg is small enough we can apply Lemma
for 0 < k < & small we have by inequality (5.10)) that ©,,,(to, 7o) < 3O, (to, 7o) + ¢ and iterating this
process, for all n > 1 we obtain

1 n—1 B
Oy (t0, 20) < 57O (to, o) + €y 27,
§=0
therefore, there exists N > 1 such that for all n > N we have
@ano (to,l‘o) < 46, (5.17)
from which we obtain (from formula (5.9))) that
Aﬁnpo (to, l‘[)) S 4e. (518)

10
We observe now that for all (¢,z) € Q,,(to, o) we have the general estimate A,(t,z) < 2% 7 Ay, (to, zo) <
8 Ag,(to, xo), thus we have for all n > N:

Af{”po (ta $) S Cv

and the first inequality of (5.5)) is proven.

The second inequality of (5.5)) requires a different treatment since from (5.17) and by the definition of
the quantity Qun,, given in (5.4)), we can only deduce that for all n > N we have the bound

2ngo(1—=2)+5qo (=2 —1
K o TO) O(TO )QH”Po(tO,xo) < Ca
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which is not enough to ensure that the quantity Qy»,,(to, o) is bounded.

To overcome this issue, using the definition of the quantities A, and Q, given in (5.4) and using the
estimate (4.16) we can write (recalling that x = 7):

590
3+qo(1-12) r\ 2 Y
Q(to,z0) < 0<(f) OAZO(t0,$0)+<p> " Qo x0)
< C *3*q0(1*i*0)Aq0 2(%0 1)
= k o A (to, wo) + KT 0 Qp(to, o) | - (5.19)

We need to impose a smallness condition on 0 < £ < 1 and we will assume that we have

which is possible since % < 19 < 5qo. Now, from 1) we know that the quantity A (o, x¢) can be made
small enough if p is small enough, and thus the estimate (5.19) becomes
1 -
Q; (to, o) < §Qp(t0,$0) + €, (5.20)

where € is a small constant.

Note now, that by the bounds (5.16)) there exists a fixed 0 < py < Ry such that the quantity Q,, (to, zo)
is bounded. Thus for the parameter %k considered above we have
n—1

1 3 iy
Qi o (f0, 20) < 52 Qo (o, m0) +ED 277,

7=0
and there exists N > 1 such that for all n > N we have
Qrnp (to, o) < 4€.

To conclude, we remark now that for all (¢,z) € Q,(to,z0) with 0 < p < Ry we have P,(t,z) <
5

25*q°(1+%)P2p(t0,fL‘o) < 32P9,(to, xo), thus Q,(t, ) < CQp(to, zo) and for all n > N we finally obtain
QR”PO (tvx) <C,
the second inequality of ([5.5)) is now proven and this ends the proof of Proposition |

From the proof of Proposition we can deduce a more specific result on V®iand V®b. Indeed, we
can obtain the following result that gives the assumption 2) of Proposition

Corollary 5.1 Under all the assumptions of Proposition |5.1), we have
1o, VeieMT and 1o, V@be ML,
1 11
Proof. From the definition of A, in (5.4) and from the first estimate of (5.5)), in the proof of Proposition
for all 0 < r small and for all (¢,z) € Qg,, we have shown that we have

4— 10

1 = oo 2 1 = o Tl 12 2(1-2)
(By + Br)(t,z) = - |V ® (s, y)] dyds+; |V ®b(s,y)|°dyds < C'r o =Cr 7,
T(tzx) T(tyx)

where we used the relationship % = % + % We obtain then, for all 0 < r < 1, the estimate
. o _2
// IV ® (s, y)|>dyds + // |V @ b(s, y)|2dyds < c Tl),
r(t,x) r(t,z)

and to conclude it is enough to recall the definition of the Morrey space M?;l given in lb |
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6 Further estimates
In the previous sections we have proven so far the points 1), 2) and 5) that were assumed in Proposition
B.1

Lop, U, 1gp, be M?” 0 for some TH>-——

1 — o
1 1 1
1, V@i, 1o, Vebe MiT' with —

= 61
05! T0 + 5 (6.1)

Ta " 7 5
1oy, fe ./\/lt7’ , LG € MthTb for some T4, T > ——

2 — o

Our current task consists in proving the remaining points 3) and /) using all the information available up
to now, i.e. we need to study the following assertions:

. - : ) 1 1 l-a
]lQR1u’ ]lQRleMi’g with S—F?OS 5

for all 1 < 4,5 < 3 we have V@@

(6.2)
Lgg, N — L (ubj) € /\/lf”g with pg < p < +o00 and gy < q < 400,
Wherelgpoggand%<qo<5wherei 2_TC“WithO<oz<1.

These two points are actually related and in order the study them we need to recall some tools of
harmonic analysis in the setting of parabolic spaces

. Let us now introduce, for 0 < a < 5, the parabolic
Riesz potential Z, of a locally integrable function f : R x R® — R3 which is given by the expression

)(t, x) // (s y)dy ds.
B (|t — 5|2 +|$—y\)

As for the standard Riesz Potential in R?, we have a corresponding boundedness property

(6.3)

Lemma 6.1 I[f0 < a < 2

1<p<q<4ooand f € MPIR x R?) then for A =1 — ¢
inequality

17l 5.5 < CllFlLacps

4 we have the
b g
AN T

t,x

See [1] for a proof of this fact. We will also need the following consequence of this result

V2
Lemma 6.2 Let Q be a parabolic ball of the form (3.5). If 2 <p <q, 5 < q<6 and f € Mp2,
Define A\ =1 — Q;5 and 6 = min(§, q), then we have:

1) 1Ty (f) € %

22 (R x R).

g .

(R x R3) and 1oT1(f) € MPL(R x R3),
— P g —

2) If2<p<q,5<q<6andfe€ Mﬁf(R x R3), then we have 1oTx(1gf) € Méf(R x R3).

See [4] (Corollaries 3.1 and 3.2) for a proof of this lemma. We will also need the next result

Lemma 6.3 Let (Q be a parabolic ball of the form and consider ]le € MZ}?(R x R3). Then the
following two statements hold:

1) ifl<a<b<qg<bandba+ 3b>15, then]lQIl(ﬂQ_> M?g with o > 3,
2) ifl<a<b<gq<3 and5a+6b> 15, then HQIQ(]].QJF) EM?”;T with o > 3.
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See a proof in the Appendix B}

With these lemmas, we can state the main proposition of this section.

Proposition 6.1 Let (i, p, I;) be a suitable solution of MHD equations over () in the sense of Definition
- Assume the general hypotheses (E) and assume moreover the local mformatwns (ﬂ) for a pambol@c
ball Qr,. Then for some Ry such that Ry < Ry < Ry we have Lgg, (TS th and Lgg, b e M O with

A<z
Proof. For a point (tg,xo) that satisfies the hypothesis , consider the following radii
0<Ry<Ri<R<R<R,<t,
and the corresponding parabolic balls (recall formula )
Qr, (to, 20) C Qp(to, r0) C Qp(to, z0) C Qr,(to, To).

We introduce now two test functions ¢, : R x R® — R that belong to the space C§°(R x R?) and such
that

¢=1onQr, and supp(¢) C Qp, (6.4)
¢=1onQp and supp(p) C Qg,. (6.5)

Note in particular that since 0 < Ry < o we have #(0,-) = @(0,-) = 0 and remark that we have by
construction the identity ¢@ = ¢. We define the variable V by the expression

(7 +b), (6.6)

I
-

and if we study the equation satisfied by V we obtain
OV (t,x) = AV(t,z) + N(t,z),
V(t,0) =0,

where

= —

N = (0 — Ao)(@ —22 0:8)(0u(a+) = & (- V)a+ (@ V)b) —20(Vp) +6(f+ 7). (68)

Although this problem is very similar to the one studied with the variable U defined in which satisfies

equation , we will perform different computations in order to obtain the conclusion of Proposition

The main point is to express the pressure p in a very specific manner, indeed, since p = @p on the cylinder

Qg by the definition of the auxiliary function ¢, then over the parabolic ball Qr, we have the identity
3

—A(pp) = —@Ap + (Ag)p — 2 Z 0;((0;@)p), from which we obtain the identity
i=1

3 = ) =
), ; ¢v(al((_(8£)0)p)) _ (6.9)
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3

Recalling that we have the identity Ap = — Z 0;0j(u;b;), then the first term of can be rewritten in
ij=1

the following manner:

_V(-pA VoL
3 —
= Z CE_VA) (@@(W&@) — 8;((8;0)uibj) — 9;((9ip)uibj) + (51'33'90)(%‘57')), (6.10)
ij=1

note that the first term of the right-hand side above satisfies the identity

&~ (00 (puiby) = [¢, (Vf’f)] (i) + 1l (). (6.11)

where in the last term above we used the identity ¢ = ¢@. Now, plugging the identity (6.11]) in (6.10) and
modifying accordingly expression , we obtain the following formula for the term N defined in |@D

11 3
N =3 R = (06 - AG) i+ D)~ 23 (0d) @ +5) — & ((F- F)a + (@ D)P)
k=1 i=1
2 [ Voo V9,0, LI v
_2;::1 é, (_JA) (puibj) —22;1 (—AJ (Guib;) +2§_:1 -y (8;@)uib;
3 T 3 - N
+ 2 'Zl Eﬁ_vzj) (azW)Uzb] -2 ‘Zl ¢(_VA>(8183(,5)(u1b)
1,]= 1=
= 3
9 5v(<(_A§))p) N 4; év(az(qais;m)) 3+ )

Once we have obtained this expression for the term N , we study the solutions of the equation and we
obtain

t 11
V= / e(tfs)A/\_/’(s, )ds = Z/ e(tfs)A/\_/"k(s, )ds = Z Vi,
0 —Jo -

where we have
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k=1 i=1
v 0
¢ 3 =
— — - = — Vaa
— [ DR (b-V)a + (@-V)b) ds —2 / =21 g 220 (puibs)d
e u u S e s PU; S
fea Je2 3 | ~a) | (P
Vs b
—22 elt- sAVB(? ds—l—QZ elt= 5A¢va (8 @)u;bjds
(6.12)
7.] 1 ,_] 1 .
> X
Vo, v
+22/ (¢ sm ( . P)uib; ds—QZ/ (t=s) )(aa]go)(uz i)ds
2,7=1 2,7=1
Vr Vs
! _V((Ap)p) S _V(2:((0:2)p)) t
- (t—s)A (t—s)A (AN (t—s)A —
2/0 é A ds+4Z/0 e b “A) ds+/0 o(f + g)ds
=1
\79 ﬁll

We will study each one of these terms with the following lemma.

Lemma 6.4 If we have the information

- - 5
Lop,t, 1g,b € ./\/li’gc0 for some Ty > 1— o

1 1 1
ﬂQRV@)U HQRV®b€M2Tl with — = — 4 -,
T1 T0 5

Ta . o, 5
1Qx, f € Mt7’ , Lgg,g€ ./\/lt?wa for some T4, T > 5o

3
HQR pE Lf
then for allk =1,...,11 we have
]lQRl]_jk € Mf’j,
where 3 < o < 5.

Proof.

e For the term 171, recalling that e*=9)2 f = g, . « f where g; is the usual 3D-heat kernel, we can write

00, P00 = [tan, [ [ ar-slo = [0~ Ad) @+ D5 ).

and using the decay properties of the heat kernel as well as the properties of the test function ¢ (see
(6.4), we have

N 1 -
[LQg, Vi(t,2)| SC]ngl// I 5 ﬂQR(Wrb)(s,y)‘ dy ds.
RJRS ([t —s|2 + |z —y])
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Now, recalling the definition of the Riesz potencial given in (6.3) and since Qr, C @ we obtain the
pointwise estimate

[Lop, Vit )] < C1q,Ta([lqy (i + b)) (¢, ),

thus, taking the Morrey M?g norm in this inequality, if we define 5 < 79 < & < 6, then by Lemma
[A:2] and by the second point of Lemma[6.2, we have

o Vit )l ppe < ClliguTalllon(@+ DDl yee < CllgaTa(lay @+l e

< Clgu @+l .5 (6.13)
t

where a = %( 5) < 3 since 5 < 79 < & < 6. Thus, since Qz C Qr,, by Lemma we obtain the

control

50

10, Va(t.2) | e < CllLgu, (@ + D) a0 < +o00. (6.14)

|| 3,70
M

For the second term of we start writing (9;0)(8;(@ + b)) = 8;((8i9) (@ + b)) — (92¢) (@ + b), and

we have

3 t t
Top ot 0)] <3 1on / =918, ((8,3) (it + b)) ds +‘]1QR1 / 9D (25) (i + B)ds| . (6.15)
i=1 0 0

For the first term above, by the properties of the heat kernel and by the definition of the Riesz potential

7, (see (6.3))), we obtain

‘IQRI / 980, (0,6 (i + ) ds

0

_ 'nQRl / [, 011 = 9)(08) i+ B) 5, s

1 +b
c1o // op(+ D)l ,
R3 ( t—s\2+!x—y])

Clqy, (Ti(|Lq, (@ + b)) (t, 2).

IN

IN

The second term of |i can be treated as the term V; and we have the pointwise estimate

=,

\HQRI [ s @R+ Byis| < 1o T i+ Be o),

and gathering these two estimates we have

-, -,

Lo, Volt,2)| < Clog, (Ti(|1q, (@ + b)))(8,2) + Clo, Ty (@ + b)) (¢, ),
and taking the Morrey M?Z we obtain

@r, V2HM3U < Clllgg, (Ti([lgg (4 + )!))HMSU + gz Ta(gs (4 + )!)HMSM

now, applying the first point of Lemma [6.2] in the first term above, the second point of Lemma [6.2]
in the second term above and using the Lemma (i.e. following the same arguments displayed in

(6.13) and (6.14])) we finally get

Men, Vall o < CllLog, (@+b)]| om0 < +00.
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e For the term Vs in 1 , in a similar manner we obtain the inequality

o0 Valto)l = [ton, [ [ acale—) [6(6- 9+ @ D0)] (s.0)duas

R3
6 (- V)i + (@ V)b)| (s,)
< Clg, // T dy ds
1 s
R JR3 (It = sz + [z —y])?
< COlo, T (’nQR ((6 V)i + (@ V)b D (t, ),

from which we deduce
10r, Vallygse < C | tan, T2 (Ian G- D)) | ., +C || tan T2 (Iop@- DB | .- (6:16)

As we have completely symmetric information on « and b it is enough the study one of these terms

and we Wlll treat the first one. Applying the second point of Lemma E 3| with the parameters a = g,
b=2 and 3<g< 2, we thus write
s ) <lrn ol
Without loss of generahty we can assume =~ < 79 < 10 and by the Holder inequality in Morrey spaces
(see Lemma we obtain
H]IQR(b'v)ﬁHMtg‘q = H]lQ%bHMfﬁo Lgp,V@u 27y < +o0,

where % = 710 + % = % + % Note that the condition % < 79 < 10 and the relationship % = T% + %
are compatible with the fact that % <g< % Applying the same ideas in the second term of l) we
finally obtain

H]IQR1 V3”Mf§ < +o0.

e The quantity Vi in 1) is the most technical one and it will be treated as follows

o ] = S [] __(¢U1b)(sy)‘dd
Qr, V4L T)| = Q yas
B =
- V@@ _
< Z ]IQRlI2 <]IQR1 P, (—A) (Spulbj) ) (t,.ﬁ),

ij=1
and taking the Morrey ./\/l?g norm we have

- V9

1Qp, Villpoe < D |[Lon, 22 <]1QR1 ¢, (_ZA) (Puib; )H
’ ij=1 Mfa

and applying the second point of Lemma with a =0 = g and % <qg< %, we obtain

)

since 5 < 19 < 10, we can fix ¢ to verify % = T% + % and this relationship is compatible with the

condition % <qg< % By the definition of Morrey spaces 1} if we introduce a threshold v = @
and we have

V8;0;
(—A)

V8,8;

=¢ 4)

3,0
My

¢, ¢,

(puiby)

(puib;)

)

]lQRl 3
24
Mt,x

]]'QRl I2 <]]'QR1
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Njw

V9;0; : 1 - V9,0
1 &, —L| (Pu;b; < sup / 1 o, " (Guiby)| dadt
QR1 (*A) (90 ]) M%,q (47) 7“5(1_2371 Qr(67) QRl (*A) (QO ])
t,x o<r<t
B 5 (6.17)
1 - V0,0;
+ sup / 1 &, —L | (pub;)| dadt.
) 203 Jo,am | M |7 (<A ’
<7
Now, we study the second term above and we have
3 3
1 . V(?(? _ - V@@ _
sup 51_3/ Lok, |2 (puibj)| drdt < Ci ||| o, (pu;by) )
t3)eRxR3 191730) J@, (1,z) (-4) (-A) L3
<r t,x
and since ¢ is a regular function and = Aa) is a Calderén-Zydmund operator, by the Calderon commu-
tator theorem (see [?]), we have that the operator [Q_ﬁ, V00, } is bounded in the space Lt’x and we can
write
Vo 0|, _ _
H [¢, — ] (Pu;b;) < Clleuidjll 3 < Cllilg,uibsll | 3.9
sz t,x t,
<

Ol 53310, Bl s < CUu, il o0 T, Bl o0 < 00,

where in the last line we used Holder inequalities in Morrey spaces and we applied Lemma [A2] with
the fact that 5 < 9.

The first term of (6.17)) requires some extra computations: indeed, for all (t,z) € Qr, weset 0 <1 <t
and we consider the parabolic ball @, (¢, z). We have then

V8;0; V8;0;

b, V2% | (puiby)) = Lo, [@5’ <—A)] Haranb)hon [QE’ <—A>] - ta o) (649

» a)

]lQRl

3
and as before we will study the L7, norm of these two terms. For the first quantity in the right-hand
side of (6.18)), by the Calderén commutator theorem, by the definition of Morrey spaces and by the
Hoélder inequalities we have

Njw

— V(’?E)
fan, [¢’ A)

3
2

51—
.S Cltg.gubl?y <o g, H
sz(QT) t,z t,a:

(]]'Qr(puzb )

< oW 1o, @l 5 lon Bl
r 0 ” QRQUHM?;;'OH QR2 ||M§’;—O’

for all 0 < r < v, from which we deduce that

sup ——— / 1 b Vi, (1o, b)zd dt < O||1 “H% |1 5||% <+
u s - PU;0; rat < U - - Q.
(t,s-g 203 Jo, om (—A) | e Qo Ml a0 17@R P30

o<r<t

We study now the second term of the right-hand side of (6.18]) and for this we consider the following
operator:
Vo 0;

5, Vo

T:fr <1QR1 I-1g,)¢ ) f,
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recalling that Qr, C Qp C Qr, and since 0 < r < t, by the support properties of the test functions
¢ 8 ) . 1
¢ and @ (see 1) and 1) and by the properties of the convolution kernel of the operator Ay we

o (1 10.)0)as, W)FW)
- LQr Y Qr Y Y
T(f)(z) <C1 x / 2
( )( ) QRl( ) RS |5L‘—y|4
Applying these observations to the second term of the right-hand side of (6.18)) and since |z —y| > r
we have:

dy.

2

— vaa
fan, [¢’ “A)

3
]]-xf T 2
(T - 1g,)puib;) < /R ST g ) g, () uibgldy|

s |z —yl?

C / 1 u;b; 3 d
< y>r| ’4H QR2’ (- — )”LEZ(QT) y)

< OrH|[Lg,, iy

3 i (@0
L2,(Qr) Lia(@r

IA
(SIS

3 9
2
t,x T

with this estimate at hand and using the definition of Morrey spaces, we can write

[
r(t,Z)

2
drdt < Crfgr 70 H]lQR u;b; || 3.7
272

t,ac

V8;0;

ey

(T —1q, )puib)

QRl

5(1-2) 3
< Cr a H]IQRQUibj”;A?%w
5(1-3%) _ 50130 00) -, 5(1-2) .
since 3 <q<3 2 and 5 < 79 < 10 we have 7~ 3r o < 4’ and we finally obtain

2

= Vaa _ 2 - 3
QRl ®, (_ ) (I—1g,)puibj)| drdt < C”]IQRQUH;ALE,;OH]IQRQbH/QM?;o < +oo.

)
sup ———=—
0z 20720 Jor )

o<r<e

We have proven so far that all the term in (6.17]) are bounded and we can conclude that

L2, Vil gy < +00.

e For the quantity Vs in l) we write

3
- 0;
MQRIV (t,z)] < E : 1Qg, Vg s(z—y) (¢uib i)(s,y)dyds
’ = / / - \/—A\/

3 —
C Z ]lQR / RlR] (?uzb])(‘s?y) dyds
VIR JRS (It — 8|2 + o — y)t

IA

1,j=1

3
§ C Z ]lQRlzl (RlRJ(qZ;uzb])) (t,l’),

1,5=1

0;

T are the Riesz trans-

where we used the decaying properties of the heat kernel (recall that R; =

forms). Thus, taking the Morrey M?; norm we have

||1QR V5||M3<7 <C Z ||1QR T (RR (gbu% )) ”M?’Ua
i,5=1
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now by the first point of Lemma [6.2] (with A = 40t5 = 3 ¢ = 75 such that 2 £ >3 and { > o which

570
is compatible with the condition 3 < o < 5) and by the boundedness of Rlesz transforms in Morrey

spaces we obtain:

3
ILQn, Vslla@e = C|!]1QR1V5||M§§ <C D RiR;(Puiby) Mtg < Z 11, wibj | v ?
- ij=1 =T ig=l

IN

CH]IQRQJHM?’;O H]lQszHM?;o < +o0.

e The quantities 176 and )_}7 in 1j can be treated in a very similar fashion since their inner structure
is essentially the same. We thus only treat here the term Vg and following the same ideas we have

|]lQRV6|<C'Z]l //RS )

i,j=1
Taking the Morrey Mt”g norm, applying the second point of Lemma [6.2[ (with A = 4TO+5 ,p=3and

q = 70) and since the operator ?_Vgs is bounded in Morrey spaces, one has

M?;’

1,j=1
¢S |tanut |yt < Ol g o e, g0 < +oo
ij=1 ’ "

‘( A (0jP)uibj(s,y)

oV O;
dyds = C 1g, 1o <‘(a]<p)uibj
(It — s> + |z — y|)3 Z ERANICY

PV O;
(—=4A)

va
¢ A) (9j@)uib;

3
H]IQR1 Vﬁ”./\/lfg < C Z (ngo)uz

ig=1

% 2
’
Mt,

T

IA

The same computations can be performed to obtain that H]IQR1 ﬁ?HM:s,a < +o0.
t,x

e The quantity Vs in 1’ is treated in the following manner: we first write

- 3 t \V/
o Pata)] < Y |t [ 6 s 0052) by )
z}j:l
.
< 03 1, (Iz b g5 (0030t >><t,x>,
,j=1

from which we obtain, applying the second point of Lemma for some 1 < § < % and % <qg< %
and by Lemma

=

3 —
~ -V _ -V _
H]IQRlVgHM?”U < C’Z ¢j(aiaj¢)(uz‘bj) SCZ ¢j(aiaj<ﬁ)(uibj)
o el Y mia =l () ME
3 =
-V 3
< CY ¢(_T)(aiajgp)(uibj) , (6.19)
i,j=1 LILg

. . . . 6,3 .
where in the last estimate we used the space inclusion LIL® C M, 2. Let us focus now in the L™
norm above (i.e. without considering the time variable): by the properties of the kernel of the operator

% and by the definition of the test functions ¢ given in 1) and @ given in lj we can write:

-V

Qbm(aiaj@)(uibj) <

C/IR : |2]lQR( )HQR(y)(aiaj@)(uibj)(y)dy'

3le—y

IN

C (6.20)

/Rs wn%(x)]l%(y)(&@@)(uibj)(y)dy ,

|z —y[?
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and the previous expression is nothing but the convolution between the function (0;0;¢)(u;b;) and a
L*°-function, thus we have

_ Vv B
¢m(3ﬁjw)(uz‘bj) < Cll(0:0;) (uibj)l| 1 < ClllQp, uibll 3, (6.21)
LOO
thus, taking the L°-norm in the time variable we obtain
_688* b < C1 b <O b <O b
¢—7A)( 10;) (u;b;) P 11Qp, ui jHLfLQ% < Cllgp,ui jHLt%L§ < Cllgp,ui j||M§ﬁ
t-x
<

Ol il 0 1 1@, Bl 0 < 00

The quantity Vy in 1) can be treated in the same way as the term Vs. Indeed, by the same arguments
displayed to deduce (6.19)), we can write

Mer Vollppr < C

I

LiLg

—xy((@ow)

where 1 < < 3 3 and if we study the L> norm of this term, by the same ideas used in l-) we obtain

< Cl(Ap)pllr < Cllgg,pll 3
Lo

_ v
||¢(_A)((A<p)p)

Thus, taking the L norm in the time variable (recall 1 < § < %) we have

—

I, Poll g < C |65 (Aeln)

¢

< CHHQRQpHLtgL;g < +o00.

(

LiLg

The study of the quantity Vio in 1D follows the same lines as the terms ﬁg and 179. However instead

of (6.20) we have

YV (%:((9:)p) oyl >(F-R ]
((_A>) <C /R 3 %% ()10, (W)@ )p(y)dy|
and thus we can write
o VY (9:((2i2)p))
H]lQRl VlOHMf:; < ¢ (—A) e < CH]IQRQPHL?LQ% < +o00.
t -z

The last term of (6.12) is easy to handle, indeed, we have
< C1g // o(f+9)(s,)| dyds
w (1t~ sl +|a— )

and taking the Morrey M7 norm we obtain H]IQR 1711||M3(, < C’|]]IQR1I2(]IQR2|f+ gDl \g3.0, then
i t,x

t
Lgs Viu(t,z)] < lﬂQRl/Oe(”)Aqﬁ(f g)ds

< Clgg, To(lo,, |f + d)(t @),

applying the second point of Lemma with p = 7 , =3 and since Tq, Tp > 2 , We obtain

||1QRIIQ<1QR2V+g*|>uMg,;scunQRwamﬁ,qsc(u aunfl s+ Wl ., ) < 4o
’ t,x t:v

Lemma [6.4] is now completely proven. [ |



Assume that Lemma 77 is proved and we see that Proposition can be shown by an iteration. Indeed

since we have 1o, U € M3? and IQT?)E e M3’ with o > 7 > 5, let us set 1:=1_ 0 where a:= ?10 — % and

repeat the same arguments we will obtain

- 1 1 1
lo, i€ M3 and 1g be M>? with —=——a==—2a, o1>0>7>5.
3 3 o1 O T

We can do this 1terat10n untll U— < « for some n. Then for every r3 < 72, we have 1g,u € M3 " and
]lQ3b € ./\/l;’ o with == + = < £. The Proposition is then proved by replacing o, by o.

Let us now state the last Proposition which implies directly the main result of this paper.
Proposition 6.2 Let @ be a suitable solution of the Navier-Stokes equations. Assume that on some neigh-
borhood Q,., (to,x0) of (to,xo) we have

o 1Q72f, lg,,g € M10/7 0 for some 19 > 5/2

e lg,, U, lgmb € M? 70 for some 19 > 5

e lg, 1,10, bE/\/l’ with7+f<5

e 1o, V®i,lg, Vabe M with L =1 +1

then for every rs < ra, we have (4,b) is Holderian on Qy,(to, xo).

Proof of Proposition Using the same technique and defining the same two test functions as in the

proof of Proposition we obtain the following parabolic equation:
U = AU+ N,
. (6.22)
U(,-)=0.

where U = ¢(@ + b) and the detailed expression of N can be found in (??). Let o be a smooth function
on R? 0, homogeneous of exponent 1 : o(\) = Ao (&) for A > 0, and let o(D) be the Fourier multiplier
operator with symbol Y. Then the solution of equation (6.22)) can be written as

Ut,z) = /Ot hi—g * (W(s, )+ o(D)H s, )) ds

where h; is the heat kernel and

Z\i

H(s,x) 2/\710 +/\711-

It follows from the Lemma 7?7 that we are left to show that

W(s,x) € M}7°, 1<p<00,5/2<00<5 (6.23)
H(s,z) e Mi7", 1<p<oi,01>5 (6.24)

(1). Case for N} and N3. By the hypotheses lg,,u,1g,, b e M?TO for some 79 > 5 > 5/2 and

1QT2f lg,,G € ./\/110/7’ ? for some 79 > 5/2, we immediately obtain that
Ni = (86 + Ad) (@ +b) € MP°, Ny =o(f+§) € My, for some o0p > 5/2.
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2).

A

Case for A72. We bound
Il pgossrs = 16 (B 9)ii+ (@ D)) g0
<cla B[, 2.r D) a2
< el g0 121 + € 181 gl 2

with =—

1
o0

%+%:%+%+%<%,soweget

Ns € ./\/lfv/f’ag for some o > 5/2.

. Case for N,. recalling the proof of the estimate (?7) and using the second and the third hypothesis

of Proposition we are able to find that

. 1 1 1 1 2
NyeMdloo — — — 4 — 4 -2
4 b oo T0+(5+5 5
i.e.

Nye M2 g9 > 5/2.

. Case for N; with [ =5,--- 9. Recalling the estimates (??)-(??), we get

9
ZM e M{%7°  for some op >5/2.
=5

. Case for Nyo and Nj;. We want to prove estimate (6.24). Indeed, since R;R; is bounded in LP, we

have
3
I3 R0t ygynen < AT yyner < Ny Bl
/[/7.]:
Withoil:%o+%<%,sothat

3
S RiR;(buibs) € M2 for some oy > 5.
ij=1
Moreover, By the hypotheses 1g,, 4, 1QT25€ M?;O for some 19 > 5, we get that for ¢t =1,2,3

-,

(8;0) (@ +b) € MPT* for some o1 > 5.

t,x

Combining the two estimates above, we find that (6.24) holds. This completes our proof.

Useful Properties of Morrey spaces

Lemma A.1
1) If f,§: R x R — R3 are two functions such that f € MPHR x R?) and g € L{S,(R x R?), then for

T

all 1 <p < g < +oo we have
1F- gl < Cllapallzgs.
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2) If f G: R xR> — R3 are two functions that belong to the space /\/lpq(]R x R3) then we have the
inequality

17l 5.3 < Ol ez a1 aaz-
3) Moregenemlly, let1<p0<q0<+oo 1<p1 <q1 < +ooand 1 < py < qo < +00. [f +172—p10
and + L — L then for two measurable functions f,g: R x R® — R3 such that f € /\/lpl’q1 and

ge Mp2’q2, we hcwe the following version of the Hélder inequality in Morrey spaces:

- < —»| o
1f - Gl pgpoa0 < NSl pgrran [|G1] pgrz oo
f 9 Mt,z’ - f '/Vlt,z7 9 Mt,l"

Our next lemma explains the behaviour of parabolic Morrey spaces with respect to localization in time and

space.

Lemma A.2 Let 2 be a bounded set of R x R® of the form given in (??). If we have 1 < po < p1,
1 <po<qo<qi <400 and if the function f: R x R — R3 belongs to the space Mf’lx’ql (R x R3) then we
have the following localization property

110y < Cl g

B Technical Lemmas

Proof of Lemma [4.2]

e The first point holds true thanks to the properties of the test function ¢ and the properties of the
heat kernel g;(z). Indeed, for all (s,y) € Q.(t,z), namely, (s,y) satisfies 3r? < 47% +t — s < 572 and
|z —y| < r, we have

1 7“”2—79‘2 C C
e A (R e )
Thus, estimate holds due to the definition of w(s,y).
e For the second point, for s < ¢t 4+ 2, by the usual heat kernel estimates, we have

1 1 1

I(ar2pi—s)(z —y) < C < C'min{ }. (B.1)
(=) (4r2+t—s)%+]a:—y]3 (4r2+t—s) -y
Hence, the estimate (4.6]) is valid for all (s,y) € Q,(t,z). Moreover, we have
- C
Vour2ii—s(r —y) < o for s <t+r2 (B.2)

For estimate (4.7), since V¢ is supported outside the cylinder @1, we shall only consider the case
2
(s,y) € Qp(t,x) \Qg(t, x). Using (B.1)) again, we find the following estimate
c C

9(4r24t—s) (‘T - y) < E < Tig for (Sa y) € Qp(ta l’) \ Qg(t x) (B?’)

This estimate and (B.2)) imply that |Vw(s,y)| < r% Regarding the last estimate (4.8)), we first note

that (95 + Ay)gr24t—s) (T —y) = 0, so it remains to treat the term involving Vg and the case when
time derivative and space derivative fall on the two test function ¢ and #. For the time derivative, we

see that J; (9 (Sr%t)) is neglected for all s < t + 2. For space derivative, we have
- C
v9(4r2+t75)(l‘ - y) < Ev for (S’ y) € Qp(tvx) \ Q%(t’x)'

For the same reason as before, since V¢ vanishes on Q1 the estimate (| . ) follows from the estimate

above and .
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|
Proof of Lemma For the first statement, setting A\ = 1 — %q and 0 = { and using Lemma we
have

HIﬂlngMfT:,a = HI2]191/1HM§& < Lot paga-

By the relation of A, o and ¢, we have % > 3. Indeed,

5 2q 2b aoc 5a
b<g<-=—=0<A=1—-—<1—— = — >
=75 5 5 ¢ 5—2b

It then follows that
LoToloy € MY, o> 3.

For the second point, setting A =1 — £ and o = { and using Lemma we have

ITieyll| o0 =Tiley]l g4 <I[To¥llage-

t,x Mt,z
By the hypotheses on a, g, we have
q b ao ba
b<qg<h=0<A=1--<1—-= — > >3
5 5 q 5—10

yields
107110y € Mg’g, o> 3.
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