# A remark on Besov spaces interpolation over the 2-adic group 

Diego Chamorro*

January 5, 2014


#### Abstract

Motivated by a recent result which identifies in the special setting of the 2-adic group the Besov space $\dot{B}_{1}^{1, \infty}\left(\mathbb{Z}_{2}\right)$ with $B V\left(\mathbb{Z}_{2}\right)$, the space of function of bounded variation, we study in this article some functional relationships between Besov spaces.


Keywords: Besov spaces, interpolation, $p$-adic groups.
MSC 2010: 22E35, 46E35

## 1 Introduction

The starting point of this article is given by the following inequality proved by A. Cohen, W. Dahmen, I. Daubechies \& R. De Vore in [4]. For a function $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ such that $f \in B V \cap \dot{B}_{\infty}^{-1, \infty}$ we have

$$
\begin{equation*}
\|f\|_{L^{2}}^{2} \leq C\|f\|_{B V}\|f\|_{\dot{B}_{\infty}^{-1, \infty}} \tag{1}
\end{equation*}
$$

Here $B V$ denotes the space of functions of bounded variation and $\dot{B}_{\infty}^{-1, \infty}$ stands for an homogeneous Besov space. In the article [3], we proved that in the special setting of the 2-adic group $\mathbb{Z}_{2}$, the space $B V\left(\mathbb{Z}_{2}\right)$ can be identified to the Besov space $\dot{B}_{1}^{1, \infty}\left(\mathbb{Z}_{2}\right)$ and therefore, inequality (1) becomes

$$
\begin{equation*}
\|f\|_{L^{2}}^{2} \leq C\|f\|_{\dot{B}_{1}^{1, \infty}}\|f\|_{\dot{B}_{\infty}^{-1, \infty}} \tag{2}
\end{equation*}
$$

Note that the previous estimate is false in $\mathbb{Z}_{2}$, see [3] for a counterexample. The identification between these two functional spaces and the consequences on the inequality (1) are very surprising in the sense that these estimates depend on the underlying group structure: compare the topological properties of $\mathbb{R}^{n}$ to the totally discontinuous setting of $\mathbb{Z}_{2}$.

However, one may think that the Besov norm $\|\cdot\|_{\dot{B}_{1}^{1, \infty}}$ in the right hand side of (2) is too small to achieve the inequality. Thus, it is a natural question to study the validity of (2) if we replace this norm by a bigger one (just think on the inclusion of Besov spaces $\dot{B}_{1}^{1, q} \subset \dot{B}_{1}^{1, \infty}$ valid for $q \geq 1$ ). The answer to this question is given by the next result

Theorem 1 If $f: \mathbb{Z}_{2} \longrightarrow \mathbb{R}$ is a function such that $f \in \dot{B}_{1}^{1, q} \cap \dot{B}_{\infty}^{-1, \infty}\left(\mathbb{Z}_{2}\right)$ with $q>2$, then the following inequality is false:

$$
\begin{equation*}
\|f\|_{L^{2}}^{2} \leq C\|f\|_{\dot{B}_{1}^{1, q}}\|f\|_{\dot{B}_{\infty}^{-1, \infty}} \tag{3}
\end{equation*}
$$

[^0]This is the main theorem of this article and we will construct a counterexample in the section 4 below, but before, it would be interesting to compare inequality (3) to the general estimates given by the interpolation theory ${ }^{1}$. Indeed, following this general theory, we can obtain inequalities of the form

$$
\begin{equation*}
\|f\|_{L^{2}}^{2} \leq C\|f\|_{\dot{B}_{p_{0}}^{s_{0}, q_{0}}}\|f\|_{\dot{B}_{p_{1}}^{s_{1}, q_{1}}} \tag{4}
\end{equation*}
$$

for some special values of the real parameters $s_{0}, s_{1}, p_{0}, p_{1}, q_{0}, q_{1}$.
Perhaps the most popular case is given by the real method: set $p_{0}=p_{1}=p$, fix $0<\theta<1$ and suppose $s_{0} \neq s_{1}$ with the relationship $s=(1-\theta) s_{0}+\theta s_{1}$. We obtain the following expression

$$
\left(\dot{B}_{p}^{s_{0}, q_{0}}, \dot{B}_{p}^{s_{1}, q_{1}}\right)_{\theta, q}=\dot{B}_{p}^{s, q}
$$

which gives us the estimate

$$
\begin{equation*}
\|f\|_{\dot{B}_{p}^{s, q}} \leq C\|f\|_{\dot{B}_{p}^{s_{0}, q_{0}}}^{1-\theta}\|f\|_{\dot{B}_{p}^{s_{1}, q_{1}}}^{\theta} \tag{5}
\end{equation*}
$$

It is very important to remark that in this particular case no relationship between $q_{0}, q_{1}$ and $q$ is asked. Obviously, inequality (3) can not be obtained from (5), since $p_{0} \neq p_{1}$.

The case when $p_{0} \neq p_{1}$ is more restrictive and following the complex method we have for $1 \leq$ $p_{0}, q_{0} \leq+\infty$ and $1 \leq p_{1}, q_{1}<+\infty$ the formula

$$
\left[\dot{B}_{p_{0}}^{s_{0}, q_{0}}, \dot{B}_{p_{1}}^{s_{1}, q_{1}}\right]_{\theta}=\dot{B}_{p}^{s_{1}, q}
$$

which gives us an estimate of the type (4) with $s=(1-\theta) s_{0}+\theta s_{1}, \frac{1}{p}=\frac{1-\theta}{p_{0}}+\frac{\theta}{p_{1}}$, and $\frac{1}{q}=\frac{1-\theta}{q_{0}}+\frac{\theta}{q_{1}}$. Note that we have in this case a relationship between $q_{0}, q_{1}$ and $q$. Again, this method can not be applied to inequality (3).

It seems of course that inequality (3) cannot be obtained by an simple interplation argument -actually this inequality is false in $\mathbb{R}^{n}$-, but what it would make it plausible in the setting of $\mathbb{Z}_{2}$ is the special relationship between inequalities (11) and (2) and this is the main reason why Theorem 1 is relevant.

The plan of the article is the following. In section 2 we recall some properties of the $p$-adic spaces, in section 3 we give the definition of Besov spaces over the 2 -adic group $\mathbb{Z}_{2}$ and in section 4 we prove Theorem 1 .

## $2 \quad p$-adic groups

Our main reference here are the books [9, [7] and [1] where more details concerning the topological structure of the $p$-adic groups can be found.

We write $a \mid b$ when $a$ divide $b$ or, equivalently, when $b$ is a multiple of $a$. Let $p$ be any prime number, for $0 \neq x \in \mathbb{Z}$, we define the $p$-adic valuation of $x$ by $\gamma(x)=\max \left\{r: p^{r} \mid x\right\} \geq 0$ and, for any rational number $x=\frac{a}{b} \in \mathbb{Q}$, we write $\gamma(x)=\gamma(a)-\gamma(b)$. Furthermore if $x=0$, we agree to write $\gamma(0)=+\infty$.

[^1]Let $x \in \mathbb{Q}$ and $p$ be any prime number, with the $p$-adic valuation of $x$ we can construct a norm by writing

$$
|x|_{p}=\left\{\begin{array}{lll}
p^{-\gamma} & \text { if } & x \neq 0  \tag{6}\\
p^{-\infty}=0 & \text { if } & x=0
\end{array}\right.
$$

This expression satisfy the following properties
a) $|x|_{p} \geq 0$, and $|x|_{p}=0 \Longleftrightarrow x=0$;
b) $|x y|_{p}=|x|_{p}|y|_{p}$;
c) $|x+y|_{p} \leq \max \left\{|x|_{p},|y|_{p}\right\}$, with equality when $|x|_{p} \neq|y|_{p}$.

When a norm satisfy $c$ ) it is called a non-Archimedean norm and an interesting fact is that over $\mathbb{Q}$ all the possible norms are equivalent to $|\cdot|_{p}$ for some $p$ : this is the so-called Ostrowski theorem, see [1] for a proof.
Definition 2.1 Let $p$ be a any prime number. We define the field of p-adic numbers $\mathbb{Q}_{p}$ as the completion of $\mathbb{Q}$ when using the norm $|\cdot|_{p}$.
We present in the following lines the algebraic structure of the set $\mathbb{Q}_{p}$. Every $p$-adic number $x \neq 0$ can be represented in a unique manner by the formula

$$
\begin{equation*}
x=p^{\gamma}\left(x_{0}+x_{1} p+x_{2} p^{2}+\ldots\right) \tag{7}
\end{equation*}
$$

where $\gamma=\gamma(x)$ is the $p$-adic valuation of $x$ and $x_{j}$ are integers such that $x_{0}>0$ and $0 \leq x_{j} \leq p-1$ for $j=1,2, \ldots$. Remark that this canonical representation implies the identity $|x|_{p}=p^{-\gamma}$.

Let $x, y \in \mathbb{Q}_{p}$, using the formula (7) we define the sum of $x$ and $y$ by $x+y=p^{\gamma(x+y)}\left(c_{0}+c_{1} p+\right.$ $\left.c_{2} p^{2}+\ldots\right)$ with $0 \leq c_{j} \leq p-1$ and $c_{0}>0$, where $\gamma(x+y)$ and $c_{j}$ are the unique solution of the equation

$$
p^{\gamma(x)}\left(x_{0}+x_{1} p+x_{2} p^{2}+\ldots\right)+p^{\gamma(y)}\left(y_{0}+y_{1} p+y_{2} p^{2}+\ldots\right)=p^{\gamma(x+y)}\left(c_{0}+c_{1} p+c_{2} p^{2}+\ldots\right)
$$

Furthermore, for $a, x \in \mathbb{Q}_{p}$, the equation $a+x=0$ has a unique solution in $\mathbb{Q}_{p}$ given by $x=-a$. In the same way, the equation $a x=1$ has a unique solution in $\mathbb{Q}_{p}: x=1 / a$.

We take now a closer look at the topological structure of $\mathbb{Q}_{p}$. With the norm $|\cdot|_{p}$ we construct a distance over $\mathbb{Q}_{p}$ by writing

$$
\begin{equation*}
d(x, y)=|x-y|_{p} \tag{8}
\end{equation*}
$$

and we define the balls $B_{\gamma}(x)=\left\{y \in \mathbb{Q}_{p}: d(x, y) \leq p^{\gamma}\right\}$ with $\gamma \in \mathbb{Z}$. Remark that, from the properties of the $p$-adic valuation, this distance has the ultra-metric property (i.e. $d(x, y) \leq$ $\left.\max \{d(x, z), d(z, y)\} \leq|x|_{p}+|y|_{p}\right)$.

We gather with the next proposition some important facts concerning the balls in $\mathbb{Q}_{p}$.
Proposition 2.1 Let $\gamma$ be an integer, then we have

1) the ball $B_{\gamma}(x)$ is a open and a closed set for the distance (8).
2) every point of $B_{\gamma}(x)$ is its center.
3) $\mathbb{Q}_{p}$ endowed with this distance is a complete Hausdorff metric space.
4) $\mathbb{Q}_{p}$ is a locally compact set.
5) the p-adic group $\mathbb{Q}_{p}$ is a totally discontinuous space.

## 3 Functional spaces

In this article, we will work with the subset $\mathbb{Z}_{2}$ of $\mathbb{Q}_{2}$ which is defined by $\mathbb{Z}_{2}=\left\{x \in \mathbb{Q}_{2}:|x|_{2} \leq 1\right\}$, and we will focus on real-valued functions over $\mathbb{Z}_{2}$. Since $\mathbb{Z}_{2}$ is a locally compact commutative group, there exists a Haar measure $d x$ which is translation invariant i.e.: $d(x+a)=d x$, furthermore we have the identity $d(x a)=|a|_{2} d x$ for $a \in \mathbb{Z}_{2}^{*}$. We will normalize the measure $d x$ by setting

$$
\int_{\left\{|x|_{2} \leq 1\right\}} d x=1
$$

This measure is then unique and we will note $|E|$ the measure for any subset $E$ of $\mathbb{Z}_{2}$.
Lebesgue spaces $L^{p}\left(\mathbb{Z}_{2}\right)$ are thus defined in a natural way: $\|f\|_{L^{p}}=\left(\int_{\mathbb{Z}_{2}}|f(x)|^{p} d x\right)^{1 / p}$ for $1 \leq p<+\infty$, with the usual modifications when $p=+\infty$.

See more details about function spaces in [5], 6] and (9].
Let us now introduce the Littlewood-Paley decomposition in $\mathbb{Z}_{2}$. We note $\mathcal{F}_{j}$ the Boole algebra formed by the equivalence classes $E \subset \mathbb{Z}_{2}$ modulo the sub-group $2^{j} \mathbb{Z}_{2}$. Then, for any function $f \in L^{1}\left(\mathbb{Z}_{2}\right)$, we call $S_{j}(f)$ the conditionnal expectation of $f$ with respect to $\mathcal{F}_{j}$ :

$$
S_{j}(f)(x)=\frac{1}{\left|B_{j}(x)\right|} \int_{B_{j}(x)} f(y) d y
$$

The dyadic blocks are thus defined by the formula $\Delta_{j}(f)=S_{j+1}(f)-S_{j}(f)$ and the Littlewood-Paley decomposition of a function $f: \mathbb{Z}_{2} \longrightarrow \mathbb{R}$ is given by

$$
\begin{equation*}
f=S_{0}(f)+\sum_{j=0}^{+\infty} \Delta_{j}(f) \quad \text { where } S_{0}(f)=\int_{\mathbb{Z}_{2}} f(x) d x \tag{9}
\end{equation*}
$$

We will need in the sequel some very special sets noted $Q_{j, k}$. Here is the definition and some properties:

Proposition 3.1 Let $j \in \mathbb{N}$ and $k=\left\{0,1, \ldots, 2^{j}-1\right\}$. Define the subset $Q_{j, k}$ of $\mathbb{Z}_{2}$ by

$$
\begin{equation*}
Q_{j, k}=\left\{k+2^{j} \mathbb{Z}_{2}\right\} . \tag{10}
\end{equation*}
$$

Then

1) We have the identity $\mathcal{F}_{j}=\underset{0 \leq k<2^{j}}{ } Q_{j, k}$,
2) For $k=\left\{0,1, \ldots, 2^{j}-1\right\}$ the sets $Q_{j, k}$ are mutually disjoint,
3) $\left|Q_{j, k}\right|=2^{-j}$ for all $k$,
4) the 2-adic valuation is constant over $Q_{j, k}$.

The verifications are easy and left to the reader.

With the Littlewood-Paley decomposition given in (9), we obtain the following equivalence for the Lebesgue spaces $L^{p}\left(\mathbb{Z}_{2}\right)$ with $1<p<+\infty$ :

$$
\|f\|_{L^{p}} \simeq\left\|S_{0}(f)\right\|_{L^{p}}+\left\|\left(\sum_{j \in \mathbb{N}}\left|\Delta_{j} f\right|^{2}\right)^{1 / 2}\right\|_{L^{p}}
$$

See the book [8], chapter IV, for a general proof.
For Besov spaces we will define them by the norm

$$
\begin{equation*}
\|f\|_{B_{p}^{s, q}} \simeq\left\|S_{0} f\right\|_{L^{p}}+\left(\sum_{j \in \mathbb{N}} 2^{j s q}\left\|\Delta_{j} f\right\|_{L^{p}}^{q}\right)^{1 / q} \tag{11}
\end{equation*}
$$

where $s \in \mathbb{R}, 1 \leq p, q<+\infty$ with the necessary modifications when $p, q=+\infty$.

Remark 1 For homogeneous functional spaces $\dot{B}_{p}^{s, q}$, we drop out the term $\left\|S_{0} f\right\|_{L^{p}}$ in 11 .

## 4 Proof of the Theorem 1

To begin the construction of the counterexample we consider $0<j_{0}<j_{1}$ two integers and we fix $\alpha, \beta \in \mathbb{R}$ such that

$$
\begin{equation*}
2^{2 j_{0}} \leq \frac{\beta}{\alpha} . \tag{12}
\end{equation*}
$$

Take now a decreasing sequence $\left(\varepsilon_{j}\right)_{j \in \mathbb{N}} \in \ell^{q}(\mathbb{N})$ with $q>2$ such that $\varepsilon_{0}=1$ and $\left(\varepsilon_{j}\right)_{j \in \mathbb{N}} \notin \ell^{2}(\mathbb{N})$.
Define $N_{j}$ in the following form

$$
N_{j}=\left\{\begin{array}{lll}
2^{j} & \text { if } & 0<j<j_{0}  \tag{13}\\
2^{-j \frac{\beta}{\alpha}} & \text { if } & j_{0} \leq j \leq j_{1}
\end{array}\right.
$$

We construct a function $f: \mathbb{Z}_{2} \longrightarrow \mathbb{R}$ by considering his values over the dyadic blocs and we will use for this the sets $Q_{j, k}$ defined in (10):

$$
\Delta_{j} f(x)=\left\{\begin{array}{lll}
\varepsilon_{j} \alpha 2^{j} & \text { over } & Q_{j+1,0}, \\
-\varepsilon_{j} \alpha 2^{j} & \text { over } & Q_{j+1,1}, \\
\varepsilon_{j} \alpha 2^{j} & \text { over } & Q_{j+1,2}, \\
-\varepsilon_{j} \alpha 2^{j} & \text { over } & Q_{j+1,3}, \\
& \vdots & \\
\varepsilon_{j} \alpha 2^{j} & \text { over } & Q_{j+1,2 N_{j}-2}, \\
-\varepsilon_{j} \alpha 2^{j} & \text { over } & Q_{j+1,2 N_{j}-1}, \\
0 & \text { elsewhere. }
\end{array}\right.
$$

Remark that, with this definition of $\Delta_{j} f(x)$ we have the identities

- $\left\|\Delta_{j} f\right\|_{L^{\infty}}=\varepsilon_{j} \alpha 2^{j}$,
- $\left\|\Delta_{j} f\right\|_{L^{1}}=\varepsilon_{j} \alpha N_{j}$,
- $\left\|\Delta_{j} f\right\|_{L^{2}}^{2}=\varepsilon_{j}^{2} \alpha^{2} 2^{j} N_{j}$.

From this quantities we construct the following norms
(a) for the Besov space $\dot{B}_{\infty}^{-1, \infty}$ we have

$$
\|f\|_{\dot{B}_{\infty}^{-1, \infty}}=\sup _{j \in \mathbb{N}} 2^{-j}\left\|\Delta_{j} f\right\|_{L^{\infty}}=\alpha \text {, since the sequence }\left(\varepsilon_{j}\right)_{j \in \mathbb{N}} \text { is decreasing and } \varepsilon_{0}=1 \text {. }
$$

(b) for the Besov space $\dot{B}_{1}^{1, q}$ we write

$$
\|f\|_{\dot{B}_{1}^{1, q}}^{q}=\sum_{j=0}^{j_{1}}\left(2^{j}\left\|\Delta_{j} f\right\|_{L^{1}}\right)^{q}=\sum_{j=0}^{j_{1}} 2^{j q} \varepsilon_{j}^{q} \alpha^{q} N_{j}^{q}=\alpha^{q}\left(\sum_{j=0}^{j_{0}} 2^{j q} \varepsilon_{j}^{q} N_{j}^{q}+\sum_{j>j_{0}}^{j_{1}} 2^{j q} \varepsilon_{j}^{q} N_{j}^{q}\right)
$$

We use now the values of $N_{j}$ given in (13) and the relationship (12) to obtain

$$
=\alpha^{q}\left(\sum_{j=0}^{j_{0}} 2^{2 j q} \varepsilon_{j}^{q}+\sum_{j>j_{0}}^{j_{1}} \varepsilon_{j}^{q} \frac{\beta^{q}}{\alpha^{q}}\right)=\beta^{q}\left(\sum_{j=0}^{j_{0}} 2^{2 j q} \frac{\alpha^{q}}{\beta^{q}} \varepsilon_{j}^{q}+\sum_{j>j_{0}}^{j_{1}} \varepsilon_{j}^{q}\right) \simeq \beta^{q}\left(\sum_{j=0}^{j_{0}} 2^{q\left(2 j-2 j_{0}\right)} \varepsilon_{j}^{q}+\sum_{j>j_{0}}^{j_{1}} \varepsilon_{j}^{q}\right) .
$$

Then we have $\|f\|_{\dot{B}_{1}^{1, q}} \simeq \beta\left(C_{1}+\sum_{j>j_{0}}^{j_{1}} \varepsilon_{j}^{q}\right)^{1 / q}$.
(c) For the Lebesgue space $L^{2}$ we use the same arguments above to obtain

$$
\|f\|_{L^{2}}^{2}=\sum_{j=0}^{j_{1}} \varepsilon_{j}^{2} \alpha^{2} 2^{j} N_{j}=\alpha^{2}\left(\sum_{j=0}^{j_{0}} 2^{2 j} \varepsilon_{j}^{2}+\sum_{j>j_{0}}^{j_{1}} \varepsilon_{j}^{2} \frac{\beta}{\alpha}\right) \simeq \alpha \beta\left(C_{2}+\sum_{j>j_{0}}^{j_{1}} \varepsilon_{j}^{2}\right) .
$$

Once these norms are computed, we go back to the inequality

$$
\|f\|_{L^{2}}^{2} \leq C\|f\|_{\dot{B}_{1}^{1, q}}\|f\|_{\dot{B}_{\infty}^{-1, \infty}}
$$

and we have

$$
\alpha \beta\left(C_{2}+\sum_{j>j_{0}}^{j_{1}} \varepsilon_{j}^{2}\right) \leq C \times \alpha \times \beta\left(C_{1}+\sum_{j>j_{0}}^{j_{1}} \varepsilon_{j}^{q}\right)^{1 / q} .
$$

But, by hypothesis, we have $\left(\varepsilon_{j}\right)_{j \in \mathbb{N}} \notin \ell^{2}(\mathbb{N})$ and $\left(\varepsilon_{j}\right)_{j \in \mathbb{N}} \in \ell^{q}(\mathbb{N})$, thus, for $j_{1}$ big enough it is impossible to find an universal constant $C$ such that the above inequality is true.

## References

[1] Y. Amice. Les nombres p-adiques. PUF, 1975.
[2] J. Bergh \& J. Löfstr̈om. Interpolation Spaces. Grundlehren der mathematischen Wissenschaften, 223. Springer Verlag (1976).
[3] D. Chamorro. A counterexample for Improved Sobolev Inequalities over the 2-adic group. Commun. Korean Math. Soc. 28 (2013), No. 2, pp. 231-241.
[4] A. Cohen, W. Dahmen, I. Daubechies \& R. De Vore. Harmonic Analysis of the space BV. Rev. Mat. Iberoamericana 19, n¹, 235-263 (2003).
[5] K. Ikeda, T. Kim, TK. Shiratani On p-adic bounded functions. Mem. Fac. Sci. Kyushu Univ. Ser. A 46, no 2, 341-349 (1992).
[6] L.C. Jang, T. Kim, J.-W. Son, S.-H. Rim On p-adic bounded functions II. J.Math. Anal. Appl. 264, no 1, 21-31 (2001).
[7] N. Koblitz, p-adic Numbers, p-adic Analysis and Zeta-functions. GTM 58. Springer Verlag, 1977.
[8] E. M. Stein. Topics in Harmonic analysis. Annals of mathematics studies, 63. Princeton University Press (1970).
[9] V. S. Vladimirov, I. V. Volovich and E. I. Zelenov. p-Adic Analysis and Mathematical Physics, World Scientific, Singapore (1994).

## Diego Chamorro

Laboratoire d'Analyse et de Probabilités Université d'Evry Val d'Essonne
23 Boulevard de France
91037 Evry Cedex
diego.chamorro@univ-evry.fr


[^0]:    ${ }^{*}$ Laboratoire d'Analyse et de Probabilités, Université d'Evry Val d'Essonne, 23 Boulevard de France, 91037 Evry Cedex - France, diego.chamorro@univ-evry.fr

[^1]:    ${ }^{1}$ see the book [2] for more details.

