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Abstract

Motivated by a recent result which identifies in the special setting of the 2-adic group

the Besov space Ḃ1,∞
1 (Z2) with BV (Z2), the space of function of bounded variation, we

study in this article some functional relationships between Besov spaces.
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1 Introduction

The starting point of this article is given by the following inequality proved by A. Cohen, W. Dahmen,
I. Daubechies & R. De Vore in [4]. For a function f : Rn −→ R such that f ∈ BV ∩ Ḃ−1,∞∞ we have

‖f‖2L2 ≤ C‖f‖BV ‖f‖Ḃ−1,∞
∞

(1)

Here BV denotes the space of functions of bounded variation and Ḃ−1,∞∞ stands for an homogeneous
Besov space. In the article [3], we proved that in the special setting of the 2-adic group Z2, the space
BV (Z2) can be identified to the Besov space Ḃ1,∞

1 (Z2) and therefore, inequality (1) becomes

‖f‖2L2 ≤ C‖f‖Ḃ1,∞
1
‖f‖Ḃ−1,∞

∞
(2)

Note that the previous estimate is false in Z2, see [3] for a counterexample. The identification be-
tween these two functional spaces and the consequences on the inequality (1) are very surprising in
the sense that these estimates depend on the underlying group structure: compare the topological
properties of Rn to the totally discontinuous setting of Z2.

However, one may think that the Besov norm ‖ · ‖Ḃ1,∞
1

in the right hand side of (2) is too small

to achieve the inequality. Thus, it is a natural question to study the validity of (2) if we replace this
norm by a bigger one (just think on the inclusion of Besov spaces Ḃ1,q

1 ⊂ Ḃ1,∞
1 valid for q ≥ 1). The

answer to this question is given by the next result

Theorem 1 If f : Z2 −→ R is a function such that f ∈ Ḃ1,q
1 ∩ Ḃ−1,∞∞ (Z2) with q > 2, then the

following inequality is false:
‖f‖2L2 ≤ C‖f‖Ḃ1,q

1
‖f‖Ḃ−1,∞

∞
(3)
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This is the main theorem of this article and we will construct a counterexample in the section 4
below, but before, it would be interesting to compare inequality (3) to the general estimates given
by the interpolation theory1. Indeed, following this general theory, we can obtain inequalities of the
form

‖f‖2L2 ≤ C‖f‖Ḃs0,q0
p0
‖f‖Ḃs1,q1

p1
(4)

for some special values of the real parameters s0, s1, p0, p1, q0, q1.

Perhaps the most popular case is given by the real method: set p0 = p1 = p, fix 0 < θ < 1 and
suppose s0 6= s1 with the relationship s = (1− θ)s0 + θs1. We obtain the following expression(

Ḃs0,q0
p , Ḃs1,q1

p

)
θ,q

= Ḃs,q
p

which gives us the estimate

‖f‖Ḃs,q
p
≤ C‖f‖1−θ

Ḃ
s0,q0
p
‖f‖θ

Ḃ
s1,q1
p

(5)

It is very important to remark that in this particular case no relationship between q0, q1 and q is
asked. Obviously, inequality (3) can not be obtained from (5), since p0 6= p1.

The case when p0 6= p1 is more restrictive and following the complex method we have for 1 ≤
p0, q0 ≤ +∞ and 1 ≤ p1, q1 < +∞ the formula[

Ḃs0,q0
p0

, Ḃs1,q1
p1

]
θ

= Ḃs,q
p

which gives us an estimate of the type (4) with s = (1− θ)s0 + θs1,
1
p

= 1−θ
p0

+ θ
p1

, and 1
q

= 1−θ
q0

+ θ
q1

.
Note that we have in this case a relationship between q0, q1 and q. Again, this method can not be
applied to inequality (3).

It seems of course that inequality (3) cannot be obtained by an simple interplation argument
-actually this inequality is false in Rn-, but what it would make it plausible in the setting of Z2 is
the special relationship between inequalities (1) and (2) and this is the main reason why Theorem 1
is relevant.

The plan of the article is the following. In section 2 we recall some properties of the p-adic spaces,
in section 3 we give the definition of Besov spaces over the 2-adic group Z2 and in section 4 we prove
Theorem 1.

2 p-adic groups

Our main reference here are the books [9], [7] and [1] where more details concerning the topological
structure of the p-adic groups can be found.

We write a|b when a divide b or, equivalently, when b is a multiple of a. Let p be any prime number,
for 0 6= x ∈ Z, we define the p-adic valuation of x by γ(x) = max{r : pr|x} ≥ 0 and, for any rational
number x = a

b
∈ Q, we write γ(x) = γ(a)−γ(b). Furthermore if x = 0, we agree to write γ(0) = +∞.

1see the book [2] for more details.
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Let x ∈ Q and p be any prime number, with the p-adic valuation of x we can construct a norm
by writing

|x|p =

 p−γ if x 6= 0

p−∞ = 0 if x = 0.
(6)

This expression satisfy the following properties

a) |x|p ≥ 0, and |x|p = 0 ⇐⇒ x = 0;

b) |xy|p = |x|p|y|p;

c) |x+ y|p ≤ max{|x|p, |y|p}, with equality when |x|p 6= |y|p.
When a norm satisfy c) it is called a non-Archimedean norm and an interesting fact is that over Q
all the possible norms are equivalent to | · |p for some p: this is the so-called Ostrowski theorem, see
[1] for a proof.

Definition 2.1 Let p be a any prime number. We define the field of p-adic numbers Qp as the
completion of Q when using the norm | · |p.
We present in the following lines the algebraic structure of the set Qp. Every p-adic number x 6= 0
can be represented in a unique manner by the formula

x = pγ(x0 + x1p+ x2p
2 + ...), (7)

where γ = γ(x) is the p-adic valuation of x and xj are integers such that x0 > 0 and 0 ≤ xj ≤ p− 1
for j = 1, 2, .... Remark that this canonical representation implies the identity |x|p = p−γ.

Let x, y ∈ Qp, using the formula (7) we define the sum of x and y by x + y = pγ(x+y)(c0 + c1p +
c2p

2 + ...) with 0 ≤ cj ≤ p − 1 and c0 > 0, where γ(x + y) and cj are the unique solution of the
equation

pγ(x)(x0 + x1p+ x2p
2 + ...) + pγ(y)(y0 + y1p+ y2p

2 + ...) = pγ(x+y)(c0 + c1p+ c2p
2 + ...).

Furthermore, for a, x ∈ Qp, the equation a+ x = 0 has a unique solution in Qp given by x = −a. In
the same way, the equation ax = 1 has a unique solution in Qp: x = 1/a.

We take now a closer look at the topological structure of Qp. With the norm | · |p we construct a
distance over Qp by writing

d(x, y) = |x− y|p (8)

and we define the balls Bγ(x) = {y ∈ Qp : d(x, y) ≤ pγ} with γ ∈ Z. Remark that, from the
properties of the p-adic valuation, this distance has the ultra-metric property (i.e. d(x, y) ≤
max{d(x, z), d(z, y)} ≤ |x|p + |y|p).

We gather with the next proposition some important facts concerning the balls in Qp.

Proposition 2.1 Let γ be an integer, then we have

1) the ball Bγ(x) is a open and a closed set for the distance (8).

2) every point of Bγ(x) is its center.

3) Qp endowed with this distance is a complete Hausdorff metric space.

4) Qp is a locally compact set.

5) the p-adic group Qp is a totally discontinuous space.
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3 Functional spaces

In this article, we will work with the subset Z2 of Q2 which is defined by Z2 = {x ∈ Q2 : |x|2 ≤ 1},
and we will focus on real-valued functions over Z2. Since Z2 is a locally compact commutative group,
there exists a Haar measure dx which is translation invariant i.e.: d(x + a) = dx, furthermore we
have the identity d(xa) = |a|2dx for a ∈ Z∗2. We will normalize the measure dx by setting∫

{|x|2≤1}
dx = 1.

This measure is then unique and we will note |E| the measure for any subset E of Z2.

Lebesgue spaces Lp(Z2) are thus defined in a natural way: ‖f‖Lp =

(∫
Z2

|f(x)|pdx
)1/p

for

1 ≤ p < +∞, with the usual modifications when p = +∞.

See more details about function spaces in [5], [6] and [9].

Let us now introduce the Littlewood-Paley decomposition in Z2. We note Fj the Boole algebra
formed by the equivalence classes E ⊂ Z2 modulo the sub-group 2jZ2. Then, for any function
f ∈ L1(Z2), we call Sj(f) the conditionnal expectation of f with respect to Fj:

Sj(f)(x) =
1

|Bj(x)|

∫
Bj(x)

f(y)dy.

The dyadic blocks are thus defined by the formula ∆j(f) = Sj+1(f)−Sj(f) and the Littlewood-Paley
decomposition of a function f : Z2 −→ R is given by

f = S0(f) +
+∞∑
j=0

∆j(f) where S0(f) =

∫
Z2

f(x)dx. (9)

We will need in the sequel some very special sets noted Qj,k. Here is the definition and some
properties:

Proposition 3.1 Let j ∈ N and k = {0, 1, ..., 2j − 1}. Define the subset Qj,k of Z2 by

Qj,k =
{
k + 2jZ2

}
. (10)

Then

1) We have the identity Fj =
⋃

0≤k<2j
Qj,k,

2) For k = {0, 1, ..., 2j − 1} the sets Qj,k are mutually disjoint,

3) |Qj,k| = 2−j for all k,

4) the 2-adic valuation is constant over Qj,k.

The verifications are easy and left to the reader.
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With the Littlewood-Paley decomposition given in (9), we obtain the following equivalence for
the Lebesgue spaces Lp(Z2) with 1 < p < +∞:

‖f‖Lp ' ‖S0(f)‖Lp +

∥∥∥∥∥
(∑

j∈N

|∆jf |2
)1/2

∥∥∥∥∥
Lp

.

See the book [8], chapter IV, for a general proof.

For Besov spaces we will define them by the norm

‖f‖Bs,q
p
' ‖S0f‖Lp +

(∑
j∈N

2jsq‖∆jf‖qLp

)1/q

(11)

where s ∈ R, 1 ≤ p, q < +∞ with the necessary modifications when p, q = +∞.

Remark 1 For homogeneous functional spaces Ḃs,q
p , we drop out the term ‖S0f‖Lp in (11).

4 Proof of the Theorem 1

To begin the construction of the counterexample we consider 0 < j0 < j1 two integers and we fix
α, β ∈ R such that

22j0 ≤ β

α
. (12)

Take now a decreasing sequence (εj)j∈N ∈ `q(N) with q > 2 such that ε0 = 1 and (εj)j∈N /∈ `2(N).
Define Nj in the following form

Nj =


2j if 0 < j < j0,

2−j β
α

if j0 ≤ j ≤ j1.

(13)

We construct a function f : Z2 −→ R by considering his values over the dyadic blocs and we will
use for this the sets Qj,k defined in (10):

∆jf(x) =



εjα2j over Qj+1,0,

−εjα2j over Qj+1,1,

εjα2j over Qj+1,2,

−εjα2j over Qj+1,3,
...

εjα2j over Qj+1,2Nj−2,

−εjα2j over Qj+1,2Nj−1,

0 elsewhere.

Remark that, with this definition of ∆jf(x) we have the identities

• ‖∆jf‖L∞ = εjα2j,

• ‖∆jf‖L1 = εjαNj,
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• ‖∆jf‖2L2 = ε2jα
22jNj.

From this quantities we construct the following norms

(a) for the Besov space Ḃ−1,∞∞ we have

‖f‖Ḃ−1,∞
∞

= sup
j∈N

2−j‖∆jf‖L∞ = α, since the sequence (εj)j∈N is decreasing and ε0 = 1.

(b) for the Besov space Ḃ1,q
1 we write

‖f‖q
Ḃ1,q

1

=

j1∑
j=0

(
2j‖∆jf‖L1

)q
=

j1∑
j=0

2jqεqjα
qN q

j = αq

(
j0∑
j=0

2jqεqjN
q
j +

j1∑
j>j0

2jqεqjN
q
j

)

We use now the values of Nj given in (13) and the relationship (12) to obtain

= αq

(
j0∑
j=0

22jqεqj +

j1∑
j>j0

εqj
βq

αq

)
= βq

(
j0∑
j=0

22jqα
q

βq
εqj +

j1∑
j>j0

εqj

)
' βq

(
j0∑
j=0

2q(2j−2j0)εqj +

j1∑
j>j0

εqj

)
.

Then we have ‖f‖Ḃ1,q
1
' β

(
C1 +

j1∑
j>j0

εqj

)1/q

.

(c) For the Lebesgue space L2 we use the same arguments above to obtain

‖f‖2L2 =

j1∑
j=0

ε2jα
22jNj = α2

(
j0∑
j=0

22jε2j +

j1∑
j>j0

ε2j
β

α

)
' αβ

(
C2 +

j1∑
j>j0

ε2j

)
.

Once these norms are computed, we go back to the inequality

‖f‖2L2 ≤ C‖f‖Ḃ1,q
1
‖f‖Ḃ−1,∞

∞

and we have

αβ

(
C2 +

j1∑
j>j0

ε2j

)
≤ C × α× β

(
C1 +

j1∑
j>j0

εqj

)1/q

.

But, by hypothesis, we have (εj)j∈N /∈ `2(N) and (εj)j∈N ∈ `q(N), thus, for j1 big enough it is
impossible to find an universal constant C such that the above inequality is true.

�
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