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Abstract

On the framework of the 2-adic group Z2, we study a Sobolev-like inequality where we estimate
the L2 norm by a geometric mean of the BV norm and the Ḃ−1,∞

∞ norm. We first show, using the
special topological properties of the p-adic groups, that the set of functions of bounded variations
BV can be identified to the Besov space Ḃ1,∞

1 . This identification lead us to the construction of
a counterexample to the improved Sobolev inequality.
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1 Introduction

The general improved Sobolev inequalities were initially introduced by P. Gérard, Y. Meyer and F. Oru in
[6]. For a function f such that f ∈ Ẇ s1,p(Rn) and f ∈ Ḃ−β,∞∞ (Rn), these inequalities read as follows:

‖f‖Ẇ s,q ≤ C‖f‖θẆ s1,p
‖f‖1−θ

Ḃ−β,∞∞
(1)

where 1 < p < q < +∞, θ = p/q, s = θs1 − (1− θ)β and −β < s < s1. The method used for proving these
estimates relies on the Littlewood-Paley decomposition and on a dyadic bloc manipulation and this explains
the fact that the value p = 1 is forbidden here.

In order to study the case p = 1, it is necessary to develop other techniques. The case when p = 1, s = 0
and s1 = 1 was treated by M. Ledoux in [9] using a special cut-off function; while the case s1 = 1 and p = 1
was studied by A. Cohen, W. Dahmen, I. Daubechies & R. De Vore in [5]. In this last article, the authors
give a BV-norm weak estimation using wavelet coefficients and isoperimetric inequalities and obtained, for
a function f such that f ∈ BV (Rn) and f ∈ Ḃ−β,∞∞ (Rn), the estimation below:

‖f‖Ẇ s,q ≤ C‖f‖1/qBV ‖f‖
1−1/q

Ḃ−β,∞∞
(2)

where 1 < q ≤ 2, 0 ≤ s < 1/q and β = (1− sq)/(q − 1).

In a previous work (see [3], [4]), we studied the possible generalizations of inequalities of type (1) and
(2) to other frameworks than Rn. In particular, we worked over stratified Lie groups and over polynomial
volume growth Lie groups and we obtained some new weak-type estimates.

The aim of this paper is to study inequalities of type (1) and (2) in the setting of the 2-adic group Z2.
The main reason for working in the framework of Z2 is that this group is completely different from Rn and
from stratified or polynomial Lie groups. Indeed, since the 2-adic group is totally discontinuous, it is not
absolutely trivial to give a definition for smoothness measuring spaces. Thus, the first step to do, in order to
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study these Sobolev-like inequalities, is to give an adapted characterization of such functional spaces. This
will be achieved using the Littlewood-Paley approach and, once this task is done, we will immediatly prove
-following the classical path exposed in [6]- the inequalities (1) in the setting of the 2-adic group Z2.

For the estimate (2), we introduce the BV space in the following manner: we will say that f ∈ BV (Z2)
if there exists a constant C > 0 such that∫

Z2

|f(x+ y)− f(x)|dx ≤ C|y|2 (∀y ∈ Z2).

As a surprising fact, we obtain the

Theorem 1 We have the following relationship between the space of functions of bounded variation BV (Z2)
and the Besov space Ḃ1,∞

1 (Z2):
BV (Z2) ' Ḃ1,∞

1 (Z2)

Of course, this identification is false in Rn and it is this special relationship in Z2 that give us our
principal theorem which is the 2-adic counterpart of the inequality (2):

Theorem 2 The following inequality is false in Z2. There is not an universal constant C > 0 such that we
have

‖f‖2L2 ≤ C‖f‖BV ‖f‖Ḃ−1,∞
∞

for all f ∈ BV ∩ Ḃ−1,∞
∞ (Z2).

This striking fact says that the improved Sobolev inequalities of type (2) depend on the group’s structure
and that they are no longer true for the 2-adic group Z2.

The plan of the article is the following: in section 2 we recall some well known properties about p-adic
groups, in 3 we define Sobolev and Besov spaces, in 4 we prove theorem 1 and, finally, we prove the theorem
2 in section 5.

2 p-adic groups

We write a|b when a divide b or, equivalently, when b is a multiple of a. Let p be any prime number, for
0 6= x ∈ Z, we define the p-adic valuation of x by γ(x) = max{r : pr|x} ≥ 0 and, for any rational number
x = a

b ∈ Q, we write γ(x) = γ(a)− γ(b). Furthermore if x = 0, we agree to write γ(0) = +∞.

Let x ∈ Q and p be any prime number, with the p-adic valuation of x we can construct a norm by writing

|x|p =


p−γ if x 6= 0

p−∞ = 0 if x = 0.
(3)

This expression satisfy the following properties

a) |x|p ≥ 0, and |x|p = 0 ⇐⇒ x = 0;

b) |xy|p = |x|p|y|p;

c) |x+ y|p ≤ max{|x|p, |y|p}, with equality when |x|p 6= |y|p.

When a norm satisfy c) it is called a non-Archimedean norm and an interesting fact is that over Q all the
possible norms are equivalent to | · |p for some p: this is the so-called Ostrowski theorem, see [1] for a proof.
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Definition 2.1 Let p be a any prime number. We define the field of p-adic numbers Qp as the completion
of Q when using the norm | · |p.

We present in the following lines the algebraic structure of the set Qp. Every p-adic number x 6= 0 can be
represented in a unique manner by the formula

x = pγ(x0 + x1p+ x2p
2 + ...), (4)

where γ = γ(x) is the p-adic valuation of x and xj are integers such that x0 > 0 and 0 ≤ xj ≤ p − 1 for
j = 1, 2, .... Remark that this canonical representation implies the identity |x|p = p−γ .

Let x, y ∈ Qp, using the formula (4) we define the sum of x and y by x+y = pγ(x+y)(c0 + c1p+ c2p
2 + ...)

with 0 ≤ cj ≤ p− 1 and c0 > 0, where γ(x+ y) and cj are the unique solution of the equation

pγ(x)(x0 + x1p+ x2p
2 + ...) + pγ(y)(y0 + y1p+ y2p

2 + ...) = pγ(x+y)(c0 + c1p+ c2p
2 + ...).

Furthermore, for a, x ∈ Qp, the equation a + x = 0 has a unique solution in Qp given by x = −a. In the
same way, the equation ax = 1 has a unique solution in Qp: x = 1/a.

We take now a closer look at the topological structure of Qp. With the norm | · |p we construct a distance
over Qp by writing

d(x, y) = |x− y|p (5)

and we define the balls Bγ(x) = {y ∈ Qp : d(x, y) ≤ pγ} with γ ∈ Z. Remark that, from the properties
of the p-adic valuation, this distance has the ultra-metric property (i.e. d(x, y) ≤ max{d(x, z), d(z, y)} ≤
|x|p + |y|p).

We gather with the next proposition some important facts concerning the balls in Qp.

Proposition 2.1 Let γ be an integer, then we have

1) the ball Bγ(x) is a open and a closed set for the distance (5).

2) every point of Bγ(x) is its center.

3) Qp endowed with this distance is a complete Hausdorff metric space.

4) Qp is a locally compact set.

5) the p-adic group Qp is a totally discontinuous space.

For a proof of this proposition and more details see the books [1], [8] or [13].

3 Functional spaces

In this article, we will work with the subset Z2 of Q2 which is defined by Z2 = {x ∈ Q2 : |x|2 ≤ 1}, and we
will focus on real-valued functions over Z2. Since Z2 is a locally compact commutative group, there exists
a Haar measure dx which is translation invariant i.e.: d(x + a) = dx, furthermore we have the identity
d(xa) = |a|2dx for a ∈ Z∗2. We will normalize the measure dx by setting∫

{|x|2≤1}
dx = 1.

This measure is then unique and we will note |E| the measure for any subset E of Z2. Lebesgue spaces

Lp(Z2) are thus defined in a natural way: ‖f‖Lp =
(∫

Z2
|f(x)|pdx

)1/p
for 1 ≤ p < +∞, with the usual

modifications when p = +∞.
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Let us now introduce the Littlewood-Paley decomposition in Z2. We note Fj the Boole algebra formed
by the equivalence classes E ⊂ Z2 modulo the sub-group 2jZ2. Then, for any function f ∈ L1(Z2), we call
Sj(f) the conditionnal expectation of f with respect to Fj :

Sj(f)(x) =
1

|Bj(x)|

∫
Bj(x)

f(y)dy.

The dyadic blocks are thus defined by the formula ∆j(f) = Sj+1(f) − Sj(f) and the Littlewood-Paley
decomposition of a function f : Z2 −→ R is given by

f = S0(f) +
+∞∑
j=0

∆j(f) where S0(f) =
∫

Z2

f(x)dx. (6)

We will need in the sequel some very special sets noted Qj,k. Here is the definition and some properties:

Proposition 3.1 Let j ∈ N and k = {0, 1, ..., 2j − 1}. Define the subset Qj,k of Z2 by

Qj,k =
{
k + 2jZ2

}
. (7)

Then

1) We have the identity Fj =
⋃

0≤k<2j
Qj,k,

2) For k = {0, 1, ..., 2j − 1} the sets Qj,k are mutually disjoint,

3) |Qj,k| = 2−j for all k,

4) the 2-adic valuation is constant over Qj,k.

The verifications are easy and left to the reader.

With the Littlewood-Paley decomposition given in (6), we obtain the following equivalence for the
Lebesgue spaces Lp(Z2) with 1 < p < +∞:

‖f‖Lp ' ‖S0(f)‖Lp +

∥∥∥∥∥∥
(∑
j∈N
|∆jf |2

)1/2
∥∥∥∥∥∥
Lp

.

See the book [10], chapter IV, for a general proof.

Let us turn now to smoothness measuring spaces. As said in the introduction, it is not absolutely trivial
to define Sobolev and Besov spaces over Z2 since we are working in a totally discontinuous setting. Here is
an example of this situation with the Sobolev space W 1,2: one could try to define the quantity |∇f | by the
formula

|∇f | = lim
δ→0

sup
d(x,y)<δ

|f(x)− f(y)|
d(x, y)

and define the Sobolev space W 1,2(Z2) by the norm

‖f‖∗ = ‖f‖L2 +
(∫

Z2

|∇f |2dx
)1/2

. (8)

Now, using the Littlewood-Paley decomposition we can also write

‖f‖∗∗ = ‖S0f‖L2 +

∥∥∥∥∥∥∥
∑
j∈N

22j |∆jf |2
1/2

∥∥∥∥∥∥∥
2

.
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However, the quantities ‖ · ‖∗ and ‖ · ‖∗∗ are not equivalent: in the case of (8) consider a function f = ck
constant over each Qj,k = {k + 2jZ2} for some fixed j. Then we have |∇f | ≡ 0 and for these functions the
norm ‖ · ‖∗ would be equal to the L2 norm.

This is the reason why we will use in this article the Littlewood-Paley approach to characterize Sobolev
spaces:

‖f‖W s,p ' ‖S0f‖Lp +

∥∥∥∥∥∥
(∑
j∈N

22js|∆jf |2
)1/2

∥∥∥∥∥∥
Lp

. (9)

with 1 < p < +∞ and s > 0. For Besov spaces we will define them by the norm

‖f‖Bs,qp ' ‖S0f‖Lp +

∑
j∈N

2jsq‖∆jf‖qLp

1/q

(10)

where s ∈ R, 1 ≤ p, q < +∞ with the necessary modifications when p, q = +∞.

Remark 1 For homogeneous functional spaces Ẇ s,p and Ḃs,q
p , we drop out the term ‖S0f‖Lp in (9) and

(10).

Let us give some simple examples of function belonging to these functional spaces.

1) The function f(x) = log2 |x|2 is in Ḃ1,∞
1 (Z2). First note that |x|2 = 2−γ(x) and thus f(x) = −γ(x).

Recall (cf. proposition 3.1) that over each set Qj,k, the quantity γ(x) is constant, so the dyadic bloc
∆jf is given by

∆jf(x) =


−1 over Qj+1,0

0 elsewhere.

Hence, taking the L1 norm, we have ‖∆jf‖L1 = 1
22−j and then f ∈ Ḃ1,∞

1 (Z2).

2) Set h(x) = 1/|x|2, we have h ∈ Ḃ−1,∞
∞ . For this, we must verify sup

j≥0
2−j‖∆jh‖L∞ < +∞. By definition

we obtain h(x) = 2γ(x) and then

∆jh(x) =


2j over Qj+1,0

0 elsewhere.

We finally obtain ‖∆jh‖L∞ = 2j and hence 2−j‖∆jh‖L∞ = 1 for all j, so we write h ∈ Ḃ−1,∞
∞ .

With the Littlewood-Paley characterisation of Sobolev spaces and Besov spaces given in (9) and (10) we
have the following theorem:

Theorem 3 In the framework of the 2-adic group Z2 we have, for a function f such that f ∈ Ẇ s1,p(Z2)
and f ∈ Ḃ−β,∞∞ (Z2), the inequality

‖f‖Ẇ s,q ≤ C‖f‖θẆ s1,p
‖f‖1−θ

Ḃ−β,∞∞

where 1 < p < q < +∞, θ = p/q, s = θs1 − (1− θ)β and −β < s < s1.
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Proof. We start with an interpolation result: let (aj)j∈N be a sequence, let s = θs1− (1−θ)β with θ = p/q,
then we have for r, r1, r2 ∈ [1,+∞] the estimate

‖2jsaj‖`r ≤ C‖2js1aj‖θ`r1‖2−jβaj‖1−θ`r2

See [2] for a proof. Apply this estimate to the dyadic blocks ∆jf to obtain∑
j∈Z

22js|∆jf(x)|2
1/2

≤ C

∑
j∈Z

22js1 |∆jf(x)|2
θ/2(

sup
j∈Z

2−jβ|∆jf(x)|

)1−θ

To finish, compute the Lq norm of the preceding quantities.

�

4 The BV (Z2) space and the proof of theorem 1

We study in this section the space of functions of bounded variation BV and we will prove some surprising
facts in the framework of 2-adic group Z2. Let us start recalling the definition of this space:

Definition 4.1 If f is a real-valued function over Z2, we will say that f ∈ BV (Z2) if there exists a constant
C > 0 such that ∫

Z2

|f(x+ y)− f(x)|dx ≤ C|y|2, (∀y ∈ Z2). (11)

We prove now the theorem 1 which asserts that in Z2, the BV space can be identified to the Besov space
Ḃ1,∞

1 . For this, we will use two steps given by the propositions 4.1 and 4.2 below.

Proposition 4.1 If f is a real-valued function over Z2 belonging to the Besov space Ḃ1,∞
1 , then f ∈ BV

and we have the inclusion Ḃ1,∞
1 ⊆ BV .

Proof. Let f ∈ Ḃ1,∞
1 (Z2) and let us fix |y|2 = 2−m. We have to prove the following estimation for all m > 0

I =
∫

Z2

|f(x+ y)− f(x)|dx ≤ C 2−m.

Using the Littlewood-Paley decomposition given in (6), we will work on the formula below

I =

∥∥∥∥∥∥
S0f(x+ y) +

∑
j≥0

∆jf(x+ y)

−
S0f(x) +

∑
j≥0

∆jf(x)

∥∥∥∥∥∥
L1

Then, by the dyadic block’s properties we have to study

I ≤ ‖Smf(x+ y)− Smf(x)‖L1 +
+∞∑

j=m+1

‖∆jf(x+ y)−∆jf(x)‖L1 . (12)

We estimate this inequality with the two following lemmas.

Lemma 4.1 The first term in (12) is identically zero.

Proof. Since we have fixed |y|2 = 2−m, then for x ∈ Qm,k, we have x+y ∈ Qm,k with k = {0, ..., 2m−1}.
Applying the operators Sm to the functions f(x+ y) and f(x) we get the desired result.

�

The second term in (12) is treated by the next lemma.
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Lemma 4.2 Under the hypothesis of proposition 4.1 and for |y|2 = 2−m we have

+∞∑
j=m+1

‖∆jf(x+ y)−∆jf(x)‖L1 ≤ C 2−m.

Proof. Indeed,
+∞∑

j=m+1

‖∆jf(x+ y)−∆jf(x)‖L1 ≤ 2
+∞∑

j=m+1

‖∆jf‖L1 .

We use now the fact ‖∆jf‖L1 ≤ C 2−j for all j, since f ∈ Ḃ1,∞
1 , to get

+∞∑
j=m+1

‖∆jf(x+ y)−∆jf(x)‖L1 ≤ C 2−m.

�

With these two lemmas, and getting back to (12), we deduce the following inequality for all y ∈ Z2:∫
Z2

|f(x+ y)− f(x)|dx ≤ C |y|2

and this concludes the proof of proposition 4.1.

�

Our second step in order to prove theorem 1 is the next result.

Proposition 4.2 In Z2 we have the inclusion BV (Z2) ⊆ Ḃ1,∞
1 (Z2).

Proof. Observe that we can characterize the Besov space Ḃ1,∞
1 (Z2) by the condition

‖f(·+ y) + f(· − y)− 2f(·)‖L1 ≤ C |y|2, ∀y 6= 0.

Let f be a function in BV (Z2), then we have

‖f(·+ y)− f(·)‖L1 ≤ C |y|2.

Summing ‖f(· − y)− f(·)‖L1 in both sides of the previous inequality we obtain

‖f(·+ y)− f(·)‖L1 + ‖f(· − y)− f(·)‖L1 ≤ C |y|2 + ‖f(· − y)− f(·)‖L1

and by the triangular inequality we have

‖f(·+ y) + f(· − y)− 2f(·)‖L1 ≤ C |y|2 + ‖f(· − y)− f(·)‖L1

We thus obtain
‖f(·+ y) + f(· − y)− 2f(·)‖L1 ≤ 2C |y|2.

�

We have proved, in the setting of the 2-adic group Z2, the inequalities

C1‖f‖Ḃ1,∞
1
≤ ‖f‖BV ≤ C2‖f‖Ḃ1,∞

1
,

so the theorem 1 follows.

�
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5 Improved Sobolev inequalities, BV space and proof of theorem 2

We do not give here a global treatment of the family of inequalities of type (2); instead we focus on the next
inequality

‖f‖2L2 ≤ C‖f‖BV ‖f‖Ḃ−1,∞
∞

(13)

and we want to know if this estimation is true in a 2-adic framework. Since in the Z2 setting we have the
identification ‖f‖BV ' ‖f‖Ḃ1,∞

∞
, the estimation (13) becomes

‖f‖2L2 ≤ C‖f‖Ḃ1,∞
1
‖f‖

Ḃ−1,∞
∞

. (14)

This remark lead us to the theorem 2 which states that the previous inequalities are false.

Proof. We will construct a counterexample by means of the Littlewood-Paley decomposition, so it is
worth to recall very briefly the dyadic bloc characterization of the norms involved in inequality (14). For
the L2 norm we have ‖f‖2L2 =

∑
j∈N ‖∆jf‖2L2 , while for the Besov spaces Ḃ1,∞

1 and Ḃ−1,∞
∞ we have

‖f‖
Ḃ1,∞

1
= sup

j∈N
2j‖∆jf‖L1 and

‖f‖
Ḃ−1,∞
∞

= sup
j∈N

2−j‖∆jf‖L∞ .

We construct a function f : Z2 −→ R by considering his values over the dyadic blocs and we will use
for this the sets Qj,k defined in (7). First fix α and β two non negative real numbers and j0, j1 two integers
such that 0 ≤ j0 ≤ j1 with the condition

22j0 ≤ β

α
.

Now define Nj as a function of α and β:

Nj = 2j if 0 ≤ j ≤ j0 and Nj =
β

α
2−j ≤ 2j if j0 < j ≤ j1. (15)

and write

∆jf(x) =



α2j over Qj+1,0,

−α2j over Qj+1,1,

α2j over Qj+1,2,

−α2j over Qj+1,3,
...

α2j over Qj+1,2Nj−2,

−α2j over Qj+1,2Nj−1,

0 elsewhere.

Once this function is fixed, we compute the following norms

• ‖∆jf‖L1 =
∑Nj

k=0 α2j2−j = αNj ,

• ‖∆jf‖L∞ = α2j ,

• ‖∆jf‖2L2 =
∑Nj

k=0 α
222j2−j = α22jNj ,

and we build from these quantities the Besov and Lebesgue norms in the following manner:

1) For the Besov space Ḃ−1,∞
∞ :

‖f‖
Ḃ−1,∞
∞

= sup
0≤j≤j1

2−jα2j = α,
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2) For the Besov space Ḃ1,∞
1 :

By the definition (15) of Nj we have 2j‖∆jf‖L1 = 2jαNj = 22jα if 0 ≤ j ≤ j0 and 2j‖∆jf‖L1 = β if
j0 < j ≤ j1. Since 22j0 ≤ β

α we have:
‖f‖

Ḃ1,∞
1

= β.

3) For the Lebesgue space L2:

‖f‖2L2 =
j1∑
j=0

α22jNj =
j0∑
j=0

α222j +
j1∑
j>j0

α22j
β

α
2−j =

j0∑
j=0

α222j + (j1 − j0)αβ

= αβ

α
β

j0∑
j=0

22j + (j1 − j0)

 .

With the condition 22j0 ≤ β
α , we obtain from the previous formula that

‖f‖2L2 ' αβ(j1 − j0) = ‖f‖
Ḃ1,∞

1
‖f‖

Ḃ−1,∞
∞

(j1 − j0).

Thus, getting back to (14) and therefore to (13), we have for an universal constant C the inequality

‖f‖
Ḃ1,∞

1
‖f‖

Ḃ−1,∞
∞

(j1 − j0) ≤ C‖f‖
Ḃ1,∞

1
‖f‖

Ḃ−1,∞
∞

⇐⇒ (j1 − j0) ≤ C,

which is false since we can freely choose the values of j1 and j0. The theorem 2 is proved.

�
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