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Abstract. In this paper we give a condition of type LpxL
q
T , under which the

solution u(t) of generalized KdV equation satisfies for any θ ∈ (−1, 1), for any

admissible triples (p1, q1, α1) the following inequality

‖Dα1+θ
x u(t)‖Lp1x L

q1
T
≤ c‖Dθxu(0)‖L2 .

We also present a global well-posedness result in some spaces of admissible

triples.

1. Introduction

In this work we consider properties of the solutions of the k-generalized Korteweg-

de Vries equation (k-gKdV):{
ut + uxxx + (uk+1)x = 0,

u(x, 0) = u0(x),
(1.1)

in relation with the norm ‖u‖
L

5k/4
x L

5k/2
T

.

We will prove that if u(t) is a solution of (1.1) and (p, q, α) is any admissible

triple and if

‖u(t)‖
L

5k/4
x L

5k/2
T

≤ c = c(p, k), (1.2)

then

‖Dα+θ0
x u(t)‖LpxLqT ≤ c‖Dθ0

x u(0)‖L2
x
, (1.3)

for all θ0 ∈ R, where D̂θ
xu(ξ) = |ξ|θû(ξ). Moreover we prove a global well-posedness

result in some spaces of admissible triples. We present a simple proof of previous

results.

Conditions of type (1.2) appear in some situations. See for example the Remark

1.8 and Proposition 1.5 below (see also condition (1.25) in [1]).

The case k = 1 is known as the Korteweg-de Vries (KdV) equation and is the

most famous of the family. It was derived as a model for unidirectional propagation

of nonlinear dispersive long waves [18]. The cases k = 2 and k = 4 are known
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2 X. CARVAJAL

as the modified Korteweg-de Vries equation (m-KdV) and critical KdV equation

respectively.

The k-gKdV equation have the following conserved quantities:

M(u) =

∫
R
u2(x, t)dx,

and

E(u) =

∫
R

(
(∂xu)2 − 2

(k + 1)(k + 2)
uk+2

)
(x, t)dx.

These quantities were used to establish global well-posedness for (1.1) in Hs(R),

s ≥ 1 (under smallness assumptions on the initial data when k ≥ 4) see [14, 12].

Kenig, Ponce and Vega in [16] proved the following results about the admissible

triples for the KdV equation

Proposition 1.1. Let u = U(t)u0 be the solution of the homogeneous equation{
∂tu+ ∂3xu = 0, t ∈ R, x ∈ R,
u(x, t0) = u0(x).

(1.4)

We say that (p, q, α) is an admissible triple if

1

p
+

1

2q
=

1

4
, 4 ≤ p ≤ ∞, 2 ≤ q ≤ ∞, (1.5)

and

α =
2

q
− 1

p
, −1

4
≤ α ≤ 1. (1.6)

Then

‖Dα
xU(t)u0‖LpxLqt ≤ C‖u0‖L2 , (1.7)

and

Proposition 1.2. For any admissible triples (pj , qj , αj), j = 1, 2, the following

estimate holds:

‖Dα1
x

∫ t

0

U(t− t′)f(·, t′)dt′‖Lp1x L
q1
t
≤ c‖D−α2

x f‖
L
p′2
x L

q′2
t

, (1.8)

where p′2 and q′2 are the conjugated exponents of p2 and q2.

In this work we will prove the following theorems:

Theorem 1.3. Let u(t) be a solution of k-gKdV (1.1) and let (p, q, α), is any

admissible triple. If

‖u(t)‖
L

5k/4
x L

5k/2
T

≤ c = c(p, k),

then

‖Dα+θ0
x u(t)‖LpxLqT ≤ c‖Dθ0

x u(0)‖L2
x
. (1.9)
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for all θ0 ∈ (−1, 1). In particular, we have

‖D3/4+θ0
x u(t)‖

L20
x L

5/2
T

+ ‖D−1/4+θ0x u(t)‖L4
xL

∞
T
≤ c‖Dθ0

x u(0)‖L2
x
,

and if θ0 = 1/4, implies

‖Dxu(t)‖
L20
x L

5/2
T

+ ‖u(t)‖L4
xL

∞
T
≤ c‖u(0)‖Ḣ1/4 . (1.10)

On the other hand, observe that the norm ‖ · ‖L∞
T L

2
x

also satisfies the condition

(1.7), i.e. for all θ ∈ R, it holds

‖Dθ
xU(t)u0‖L∞

T L
2
x
≤ c‖Dθ

xu0‖L2
x
,

but the norm ‖ · ‖L∞
T L

2
x

is not a norm of admissible triple type. For the m-KdV,

k=2, we will prove a result as (1.9) with this norm (for θ = 1/4), i.e. we will prove

that for any admissible triple (p, q, α) one has:

‖Dα+1/4
x u(t)‖LpxLqT + ‖D1/4

x u(t)‖L∞
T L

2
x
≤ c‖u(0)‖Ḣ1/4 .

In fact, as other application of the admissible triples, we consider the m-KdV and

we prove

Theorem 1.4. Let T > 0 and u(t), t ∈ [0, T ] be a solution of the m-KdV, then we

have the following:

If

T 1/2 <
1

2 (3c)3‖u(0)‖2
Ḣ1/4

,

then

‖u(t)‖L4
xL

∞
T

+ ‖D1/4
x u(t)‖L∞

T L
2
x
≤ 3c‖u(0)‖Ḣ1/4 . (1.11)

And if

T 1/2 <
1

3 (4c)3‖u(0)‖2
Ḣ1/4

,

then for any admissible triple (p, q, α), p 6= 4,

‖u(t)‖L4
xL

∞
T

+ ‖Dα+1/4
x u(t)‖LpxLqT + ‖D1/4

x u(t)‖L∞
T L

2
x
≤ 4c‖D1/4

x u(0)‖L2 . (1.12)

Now we will consider the case k = 4 in (1.1) (the critical KdV equation). Let

θ ∈ R fixed, u0 ∈ Hθ, and u0,N (x) =
(
χ{|ξ|<N}û0

)∨
(x). We consider the initial

value problem (IVP):{
∂tu+ ∂3xu+ ∂x(u5) = 0, x, t ∈ R,
u(x, 0) = u0,N (x),

(1.13)

and the IVP {
∂tu+ ∂3xu+ ∂x(u5) = 0, x, t ∈ R,
u(x, 0) = u0(x).

(1.14)

In [1] (Proposition 3.3) was proved the next result
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Proposition 1.5. There exists ε0 > 0 such that if u0 ∈ H1 satisfies

‖U(t)u0‖L5
xL

10
t
≤ ε0,

then the corresponding solution u of (1.14) is global and satisfies

‖u‖L5
xL

10
t
≤ 2 ‖U(t)u0‖L5

xL
10
t
.

Observe that, by (1.5) and (1.6), (5, 10, 0) is an admissible triple and by (1.7),

one has

‖U(t)u0‖L5
xL

10
t
≤ c0‖u0‖L2 . (1.15)

Theorem 1.6. Let θ ∈ (−1, 1), ε0 as in Proposition 1.5 and u0 ∈ Ḣθ with

‖u0‖L2 ≤ ε = min

{
ε0
c0
, ε1

}
(see (4.52) for the definition of ε1 and (1.15) for

c0), let (pj , qj , αj), j = 1, 2, 3 admissible triples such that

p1 ≥ 5, θ <
5

p1
< 1 + θ and p2 < p1 < p3. (1.16)

And let Yp2,p3,θ be the completion of the space:{
u(t, x) ∈ S(R2); ‖u‖Yp2,p3,θ = ‖Dα2+θ

x u(t)‖Lp2x L
q2
T

+ ‖Dα3+θ
x u(t)‖Lp3x L

q3
T
<∞

}
.

Then uN (t) solution of the IVP (1.13) converges to the solution u(t) of the IVP

(1.14), in Yp2,p3,θ. Moreover the IVP (1.14) is globally well-posed in Yp2,p3,θ.

It is possible that an analogous result of global well-posedness as in Theorem

1.6, can be obtained for other values of k 6= 4.

Concerning the well-posedness of the IVP (1.1), Kenig et al. [14, 15] and Axel

Grünrock [11] (in the case k = 3), they proved that (1.1) is locally well-posed (and

globally well-posed for data with small Ḣsk(R) − norm, k ≥ 4) in the Sobolev

space Hs(R), s > sk, where sk is defined by s1 = −3/4, s2 = 1/4, s3 = −1/6 and

sk = (k − 4)/(2k) if k ≥ 4, this result is sharp since the flow-map u0 → u(t) is not

locally uniformly continuous from Ḣsk(R) to Ḣsk(R), see Birnir et al. [4] and Kenig

et al. [17]. Colliander et al. [8], using the I-method and quasi-conserved quantities

they proved global well-posedness for the KdV and mKdV in Hs, s > −3/4 and

Hs, s > 1/4 respectively.

In the literature, the equation in (1.14) is known as the critical KdV equation

because, if one considers the g-KdV equation for k < 4, there exists the global

solution for all data in H1(R), while for k ≥ 4 the global solutions exists only for

small data (i.e., data with small H1(R)-norm). Also, the solitary wave solutions

are orbitally stable for k < 4 and unstable for k > 4, see [5].

Although there are many works that deal with the well-posedness issues for the

IVP (1.14) with low regularity initial data, in many practical situation, behavior

of the H1(R) solution holds much importance, for e.g. [19] in blow-up context.
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To be more precise, recently, Merle in [19] proved that there exists φ ∈ H1(R),

satisfying ‖φ‖L2(R) > ‖Q‖L2(R), such that the corresponding solution to the IVP

(1.14) blows-up in finite time. For more detailed account of the blow up solution

we refer readers to the work of Kenig et al. in [16], and Carvajal et al. in [1].

Fonseca et al. in [10] proved that the IVP (1.14) is globally well-posedness

in Hs(R) for s > 3/4. Farah, using Colliander, Keel, Staffilani, Takaoka e Tao

techniques ( I-method as in [6, 7, 8]) proved a global well-posedness result in Hs(R)

for s > 3/5, see [9].

The results in [14, 15, 11] (about on well-posedness of the IVP (1.1)) were

obtained by applying a fixed point argument to the integral formulation of Eq.

(1.1),

u = Ψ(u) = U(t)u0 −
∫ t

0

U(t− t′)∂x(uk+1(t′))dt′.

In the proof of Theorem 1.6 we will use an argument of approximation (see proof

of Theorem 1.6).

In order to prove the theorems above we will prove here the following inequality

of interpolation

Lemma 1.7. Let θj ∈ R, j = 1, 2, 3, θ ∈ [0, 1] and pj , qj > 1, j = 1, 2, 3 such that

θ1 = θθ2 + (1− θ)θ3,
1

p1
=

θ

p2
+

(1− θ)
p3

,
1

q1
=

θ

q2
+

(1− θ)
q3

, (1.17)

then

‖Dθ1
x u‖Lp1x L

q1
T
≤ ‖Dθ2

x u‖θLp2x L
q2
T
‖Dθ3

x u‖1−θL
p3
x L

q3
T

. (1.18)

Remark 1.8. 1) If ‖u0‖L2 ≤ ε = min

{
ε0
c0
, ε1

}
, then by (1.15), for all N is

‖U(t)u0,N‖L5
xL

10
T
≤ c0‖u0,N‖L2 ≤ c0‖u0‖L2 ≤ εc0 ≤ ε0,

and by Proposition 1.5 is

‖uN (t)‖L5
xL

10
T
≤ 2‖U(t)u0,N‖L5

xL
10
T
≤ 2 εc0, for all N. (1.19)

2) In order to verify the condition (1.2). Observe that if k = 4, then we have

‖·‖
L

5k/4
x L

5k/2
T

= ‖·‖L5
xL

10
T

, in this case we known that (5, 10, 0) is an admissible triple,

and this norm appear in the well-posedness theory for the critical KdV equation

(see Theorems 2.8, 2.10 and Corollaries 2.9, 2.11 in [14]). Thus if k = 4 there are

solutions u of (1.1) for which this norm is finite.

If k > 4. In [14] (Lemmas 3.14 and 3.15) Kenig et al. proved the following

results
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Lemma 1.9. Let k ≥ 4, If u0 ∈ Ḣsk(R), with sk = k−4
2k then

‖Dαk
x Dβk

t W (t)u0‖LpxLqt ≤ c‖D
sk
x u0‖L2 (1.20)

and if g ∈ S(R2), then

‖g‖
L

5k/4
x L

5k/2
t
≤ C‖Dαk

x Dβk
t g‖LpxLqt (1.21)

where αk = 1
10 −

2
5k , βk = 3

10 −
6
5k , 1

p = 2
5k + 1

10 , 1
q = 3

10 −
4
5k .

Using (1.20) and (1.21) they found solutions u of the IVP (1.1) with ‖u‖
L

5k/4
x L

5k/2
t

finite (k > 4), see proofs of the Theorem 2.15, Corollary 2.16, Theorem 2.17 and

Corollary 2.18 in [14].

If k = 1, 2, 3, the norm ‖ · ‖
L

5k/4
x L

5k/2
T

is not directly involved in the local well-

posedness theory established in [14]. But if we consider solutions of (1.1) in weighted

sobolev spaces (see [2, 3, 13, 20]) this norm is finite. In fact

‖u‖LpxLqT =

∫
R

〈x〉r

〈x〉r

(∫ T

0

|u(x, t)|qdt

)p/q
dx

1/p

≤ Cp,q‖u‖q1/qL∞
T L

∞
x

(∫ T

0

∫
R
〈x〉q|u(x, t)|q2 1

〈x〉q(1−r/p)
dx dt

)1/q

≤ Cp,qT 1/q ‖u‖q1/qL∞
T H

s‖〈x〉q/q2u‖q2/qL∞
T L

2
x
,

where was used that p < q, (q−p)/p < r < p(2q−2+q2)/(2q), s > 1/2, 0 < q2 < 2,

q = q1 + q2 and 〈x〉 = 1 + |x|.

Notation: We use f̂ to denote the Fourier transform of f and is defined as,

f̂(ξ) =
1

(2π)1/2

∫
R
e−ixξf(x) dx.

The L2-based Sobolev space of order s will be denoted by Hs with norm

‖f‖Hs(R) =
(∫

R
(1 + ξ2)s|f̂(ξ)|2 dξ

)1/2
.

For f : R× [0, T ]→ R we define the mixed LpxL
q
T -norm by

‖f‖LpxLqT =
(∫

R

(∫ T

0

|f(x, t)|q dt
)p/q

dx
)1/p

,

with usual modifications when p =∞. We replace T by t if [0, T ] is the whole real

line R.

We will say that f(x, t) ∈ D⊗(R2) if

f(x, t) =

N∑
i=1

fi(x)f̃i(t),

with fi, f̃i ∈ C∞0 (R) for i = 1, . . . , N . Notice that D⊗(R2) is dense in LpxL
q
t and

LqtL
p
x for p, q ∈ [1,∞).
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2. Preliminary Results

In this section we will prove Lemma 1.7 and also we present three results in [14]:

a Littlewood-Paley estimate (Proposition 2.1), a dual version of local smoothing

effect (Proposition 2.2) and a Leibniz’s rule for fractional derivatives (Proposition

2.3).

Proposition 2.1. Let g ∈ D⊗(R2), p, q ∈ (1,∞). Then

c1‖g‖LpxLqt ≤

∥∥∥∥∥∥
( ∞∑
k=0

|Qkg|2
)1/2

∥∥∥∥∥∥
LpxL

q
t

≤ c2‖g‖LpxLqt , (2.22)

where

Q̂kf(ξ) = ψk(ξ)f̂(ξ), ψk ∈ C∞0 (R), 0 ≤ ψk ≤ 1, (2.23)

ψk is a odd function such that

suppψk ⊂ {x; |x| ∈ (2k−1, 2k+1)}, |ψ(j)
k | ≤ cj2

−jk, j, k ≥ 1, ψ0 ∈ C∞0 ([−2, 2)).

Proof. For the proof of this proposition we refer to Lemma 3.21 in [14] and also to

Theorem 3.1 (a) and its proof in [21]. �

Proposition 2.2. If g ∈ L1
xL

2
t , then for any T > 0

sup
t∈[−T,T ]

∥∥∥∥ ∂∂x
∫ t

0

U(t− t′)g(·, t′)dt′
∥∥∥∥
L2
x

≤ c‖g‖L1
xL

2
t
. (2.24)

Proof. See Theorem 3.5 (ii) in [14]. �

Proposition 2.3. Let α ∈ (0, 1). Let p, p1, p2, q, q2 ∈ (1,∞), q1 ∈ (1,∞] be such

that 1/p = 1/p1 + 1/p2 and 1/q = 1/q1 + 1/q2. Then

‖Dα
xf(u)‖LpxLqT ≤ ‖f

′(u)‖Lp1x L
q1
T
‖Dα

xu‖Lp2x L
q2
T
. (2.25)

Proof. See Theorem A.6. in [14]. �

Remark 2.4. i) Since limq→∞ ‖g‖LqT = ‖g‖L∞
T

, the inequality (2.22) is also true

with the norm ‖ · ‖
L
p
xL

∞
T

.

ii) Observe that all the admissible triples in (1.5) have the following form:(
4

θ
,

2

1− θ
, 1− 5θ

4

)
, θ ∈ [0, 1], or

(
5

1− α
,

10

1 + 4α
, α

)
, α ∈ [−1/4, 1], or(

p,
2p

p− 4
, 1− 5

p

)
, p ∈ [4,∞], or

(
4q

q − 2
, q,

10− q
4q

)
, q ∈ [2,∞],

and if (p, q, α) is an admissible triple then

q ≤ 10 or p ≥ 5 =⇒ α ∈ [0, 1], and q ≥ 10 or p ≤ 5 =⇒ α ∈
[
−1

4
, 0

]
.
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ii) We consider (pj , qj , αj), j = 1, 2, 3, admissible triples with p2 < p1 < p3, thus

there is θ ∈ (0, 1) such that
1

p1
=

θ

p2
+

1− θ
p3

,

and by (1.5) we also have
1

q1
=

θ

q2
+

1− θ
q3

,

now, for any θ0 ∈ R, let θj = αj + θ0, j = 1, 2, 3, using (1.6), it is easy to verify

that also

θ1 = θθ2 + (1− θ)θ3,

follows from (1.17) and (1.18) that

‖Dα1+θ0
x u‖Lp1x L

q1
T
≤ c ‖Dα2+θ0

x u‖θ
L
p2
x L

q2
T
‖Dα3+θ0

x u‖1−θ
L
p3
x L

q3
T

. (2.26)

In particular we have

‖Dθ0
x u‖L5

xL
10
T
≤ c ‖D3/4+θ0

x u‖1/4
L20
x L

5/2
T

‖D−1/4+θ0x u‖3/4L4
xL

∞
T
, (2.27)

and if θ0 = 1/4 we obtain

‖D1/4
x u‖L5

xL
10
T
≤ c ‖Dxu‖1/4

L20
x L

5/2
T

‖u‖3/4L4
xL

∞
T
, (2.28)

2.1. Proof of Lemma 1.7.

Proof. We can consider ψk(ξ) = ψ(ξ/2k). Let φ(ξ) = |ξ|θ1ψ(ξ) and P̂kf(ξ) =

φ(ξ/2k)f̂(ξ) = φk(ξ)f̂(ξ). By the definition of Qk (see (2.23)), we have

QkD
θ1
x u = c

∫ ∞
−∞

eixξψk(ξ)|ξ|θ1 û(ξ, t)dξ

= c

∫ ∞
−∞

eixξψ

(
ξ

2k

)
|ξ|θ1
2kθ1

2kθ1 û(ξ, t)dξ

= c 2kθ1
∫ ∞
−∞

eixξφk(ξ)û(ξ, t)dξ

= 2kθ1Pku. (2.29)

Let ϕ(ξ) = ψ(ξ)|ξ|θ1−θ2 and R̂kf(ξ) = ϕ(ξ/2k)f̂(ξ) = ϕk(ξ)f̂(ξ), then

2kθ2Pku = c

∫ ∞
−∞

eixξ2kθ2φk(ξ)û(ξ, t)dξ

= c

∫ ∞
−∞

eixξ2kθ2
∣∣∣∣ ξ2k
∣∣∣∣θ1 ψ( ξ

2k

)
û(ξ, t)dξ

= c

∫ ∞
−∞

eixξ|ξ|θ2
∣∣∣∣ ξ2k
∣∣∣∣θ1−θ2 ψ( ξ

2k

)
û(ξ, t)dξ

= c

∫ ∞
−∞

eixξ|ξ|θ2ϕk (ξ) û(ξ, t)dξ

= RkD
θ2
x u. (2.30)



ADMISSIBLE TRIPLES 9

Now, let Ψ(ξ) = ψ(ξ)|ξ|θ1−θ3 and Q̂kf(ξ) = Ψ(ξ/2k)f̂(ξ) = Ψk(ξ)f̂(ξ), with the

similar argument as above, one obtains

2kθ3Pku = QkD
θ3
x u. (2.31)

On the other hand by Proposition 2.1, one has

‖Dθ1
x u‖Lp1x L

q1
T
∼

∥∥∥∥∥∥
( ∞∑
k=0

|QkDθ1
x u|2

)1/2
∥∥∥∥∥∥
L
p1
x L

q1
T

. (2.32)

Since θ1 = θθ2 +(1−θ)θ3, combining (2.29), (2.30), (2.31), (2.32) and using Hölder

inequality, we obtain

‖Dθ1
x u‖Lp1x L

q1
T
∼

∥∥∥∥∥∥
( ∞∑
k=0

|2kθ1Pku|2
)1/2

∥∥∥∥∥∥
L
p1
x L

q1
T

∼

∥∥∥∥∥∥
( ∞∑
k=0

(
|2kθ2Pku|θ |2kθ3Pku|1−θ

)2)1/2
∥∥∥∥∥∥
L
p1
x L

q1
T

∼

∥∥∥∥∥∥
( ∞∑
k=0

(
|RkDθ2

x u |θ|QkD
θ3
x u|1−θ

)2)1/2
∥∥∥∥∥∥
L
p1
x L

q1
T

.

∥∥∥∥∥∥
( ∞∑
k=0

|RkDθ2
x u |2

)θ/2 ( ∞∑
k=0

|QkD
θ3
x u|2

)(1−θ)/2
∥∥∥∥∥∥
L
p1
x L

q1
T

. (2.33)

Let

f =

( ∞∑
k=0

|RkDθ2
x u |2

)1/2

and g =

( ∞∑
k=0

|QkD
θ3
x u|2

)1/2

.

From (1.17) and (2.33) by Hölder inequality, one gets that

‖Dθ1
x u‖Lp1x L

q1
T
. ‖fθg1−θ‖Lp1x L

q1
T
. ‖f‖θ

L
p2
x L

q2
T
‖g‖1−θ

L
p3
x L

q3
T

, (2.34)

we conclude the proof using Proposition 2.1 and Remark 2.4 i). �

3. Proof of Theorems 1.3 and 1.4

Proof of Theorem 1.3. Considering the integral equation associated with IVP of

(1.1)

u(t) = U(t)u(0) +

∫ t

0

U(t− t′)∂x(u)k+1(t′)dt′. (3.35)

It suffices to prove:

‖Dα2+θ0
x u(t)‖Lp2x L

q2
T

+ ‖Dα3+θ0
x u(t)‖Lp3x L

q3
T
≤ c‖Dθ0

x u(0)‖L2
x
, (3.36)
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for all θ0 ∈ (−1, 1), and for all (pj , qj , αj), j = 1, 2, 3 admissible triples as in (1.16),

i.e. such that

p1 ≥ 5, θ0 <
5

p1
< 1 + θ0, and p2 < p1 < p3.

The desired result for the general case will then follow from these cases.

In order to prove (3.36), let (p, q, α) an admissible triple such that

1

p
+

1

p1
=

1

5
,

1

q
+

1

q1
=

3

5
, (3.37)

then

1− α− α1 = 0, and
1

p′
=

1

p1
+

4

5
,

1

q′
=

1

q1
+

2

5
, (3.38)

applying (1.7) and (1.8) in (3.35), with triples admissible (p2, q2, α2) and (p, q, α)

we deduce that for any θ0 ∈ (−1, 1) the following chain of inequalities:

‖Dα2+θ0
x u(t)‖Lp2x L

q2
T
≤ c‖Dθ0

x u(0)‖L2 + c‖D−αx Dθ0+1
x uk+1‖

Lp
′
x L

q′
T

≤ c‖Dθ0
x u(0)‖L2 + c‖Dθ0+α1

x uk+1‖
Lp

′
x L

q′
T

≤ c ‖Dθ0
x u(0)‖L2 + c‖Dθ0+α1

x u‖Lp1x L
q1
T
‖uk‖

L
5/4
x L

5/2
T

≤ c ‖Dθ0
x u(0)‖L2 + c‖Dθ0+α1

x u‖Lp1x L
q1
T
‖u‖k

L
5k/4
x L

5k/2
T

, (3.39)

where was used (2.25) and (3.38). By (2.26) we obtain

‖Dα2+θ0
x u(t)‖Lp2x L

q2
T
≤c ‖Dθ0

x u(0)‖L2

+ c‖Dα2+θ0
x u‖θ

L
p2
x L

q2
T
‖Dα3+θ0

x u‖1−θ
L
p3
x L

q3
T

‖u‖k
L

5k/4
x L

5k/2
T

.

(3.40)

Similarly applying (1.7) and (1.8) with admissible triples (p3, q3, α3) and (p, q, α)

we get

‖Dα3+θ0
x u(t)‖Lp3x L

q3
T
≤ c ‖Dθ0

x u(0)‖L2 + c‖D−αx Dθ0+1
x uk+1‖

Lp
′
x L

q′
T

≤ c ‖Dθ0
x u(0)‖L2

+ c‖Dα2+θ0
x u‖θ

L
p2
x L

q2
T
‖Dα3+θ0

x u‖1−θ
L
p3
x L

q3
T

‖u‖k
L

5k/4
x L

5k/2
T

. (3.41)

Let X = ‖Dα2+θ0
x u(t)‖Lp2x L

q2
T

, Y = ‖Dα3+θ0
x u(t)‖Lp3x L

q3
T

and Z = ‖u‖k
L

5k/4
x L

5k/2
T

.

From (3.40) and (3.41), using the Young inequality we have

X ≤ c‖Dθ0
x u(0)‖L2 + cYZ1/(1−θ) and (3.42)

Y ≤ c‖Dθ0
x u(0)‖L2 + cXZ1/θ, (3.43)

adding (3.42) with (3.43) yields

X + Y ≤ 2c‖Dθ0
x u(0)‖L2 + c(X + Y)(Z1/(1−θ) + Z1/θ),

if c (Z1/(1−θ) + Z1/θ) ≤ 1/2, we have

X + Y ≤ 4 c‖Dθ0
x u(0)‖L2 ,
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which proves the theorem �

Proof of Theorem 1.4. Following a similar argument as the proof above, we consider

the integral equation associated with the IVP (1.1) with k = 2, and we apply (1.7)

and (1.8) with triples admissible (p, q, α), p 6= 4 and (∞, 2, 1), to obtain

‖Dα+1/4
x u(t)‖LpxLqT ≤ c‖D

1/4
x u(0)‖L2 + c‖D1/4

x u3‖L1
xL

2
T

≤ c‖D1/4
x u(0)‖L2 + c‖D1/4

x u‖L2
xL

2
T
‖u‖2L4

xL
∞
T

≤ c‖D1/4
x u(0)‖L2 + cT 1/2

(
‖D1/4

x u‖L∞
T L

2
x

+ ‖u‖L4
xL

∞
T

)3
.

(3.44)

Similarly applying (1.7) and (1.8) with admissible triples (4,∞,−1/4) and (∞, 2, 1),

we arrive

‖u(t)‖L4
xL

∞
T
≤ c‖D1/4

x u(0)‖L2 + cT 1/2
(
‖D1/4

x u‖L∞
T L

2
x

+ ‖u‖L4
xL

∞
T

)3
. (3.45)

And using the dual version of local smoothing effect (2.24):

‖D1/4
x u(t)‖L∞

T L
2
x
≤ c‖D1/4

x u(0)‖L2 + c‖D1/4
x u3‖L1

xL
2
T

≤ c‖D1/4
x u(0)‖L2 + cT 1/2

(
‖D1/4

x u‖L∞
T L

2
x

+ ‖u‖L4
xL

∞
T

)3
. (3.46)

Let XT = ‖u(t)‖L4
xL

∞
T

, YT = ‖Dα+1/4
x u(t)‖LpxLqT and ZT = ‖D1/4

x u‖L∞
T L

2
x
. From

(3.44), (3.45) and (3.46) we obtain

XT + YT + ZT ≤ 3 c‖D1/4
x u(0)‖L2 + 3c T 1/2 (ZT + XT + YT )

3
. (3.47)

Observe that by immersion, yields

X0+Y0+Z0 = ‖u(0)‖L4+‖D1/4
x u(0)‖L2 ≤ c‖D1/4

x u(0)‖L2+‖D1/4
x u(0)‖L2 ≤ 2c‖D1/4

x u(0)‖L2 ,

where Y0 = 0, since p 6= 4 implies 2 ≤ q < ∞. Now using a known result of

continuity and (3.47) we obtain that

XT + YT + ZT ≤ 4 c‖D1/4
x u(0)‖L2 ,

if T 1/2 < 1/(43 3c3‖u(0)‖2
Ḣ1/4). Which enclosed the proof of (1.12).

Now, in order to prove (1.11). Let XT = ‖u(t)‖L4
xL

∞
T

and ZT = ‖D1/4
x u‖L∞

T L
2
x
.

From (3.45) and (3.46) we obtain

XT + ZT ≤ 2 c‖D1/4
x u(0)‖L2 + 2c T 1/2 (XT + ZT )

3
. (3.48)

By immersion is

X0+Z0 = ‖u(0)‖L4+‖D1/4
x u(0)‖L2 ≤ c‖D1/4

x u(0)‖L2+‖D1/4
x u(0)‖L2 ≤ 2c‖D1/4

x u(0)‖L2 .

Now using a known result of continuity and (3.48) we obtain that

XT + ZT ≤ 3 c‖D1/4
x u(0)‖L2 ,

if T 1/2 < 1/(332c3‖u(0)‖2
Ḣ1/4). Which enclosed the proof of (1.11). �
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4. Global Well-Posedness Theory

In this section we will prove Theorem 1.6.

Proof of Theorem 1.6. Initially we will prove that {uN (t)} is a Cauchy sequence in

Yp2,p3,θ. Considering the integral equation associated with the IVP of (1.13):

uN (t) = U(t)u0,N +

∫ t

0

U(t− t′)∂x(uN )5(t′)dt′, (4.49)

we have

‖uN (t)− uM (t)‖Yp2,p3,θ ≤ c ‖u0,N − u0,M‖Ḣθ

+ ‖
∫ t

0

U(t− t′)∂x((uN )5 − (uM )5)(t′)dt′‖Yp2,p3,θ , (4.50)

let (p, q, α) an admissible triples such that (3.37) holds, using Proposition 1.5 and

with a similar argument as the proof of Theorem 1.3, (see (3.39)) follows that

‖
∫ t

0

U(t− t′)∂x((uN )5− (uM )5)(t′)dt′‖Yp2,p3,θ ≤c‖D
−α+θ+1
x ((uN )5− (uM )5)‖

Lp
′
x L

q′
T

≤ c‖Dθ+α1
x (uN − uM )‖Lp1x L

q1
T

(
‖uN‖4L5

xL
10
T

+ ‖uM‖4L5
xL

10
T

)
≤ c‖uN (t)− uM (t)‖Yp2,p3,θ

(
‖uN‖4L5

xL
10
T

+ ‖uM‖4L5
xL

10
T

)
≤ ‖uN (t)− uM (t)‖Yp2,p3,θ2c(2εc0)4, (4.51)

where in the last inequality was used (1.19). As

ε ≤ ε1 :=
1

(26 c c40)1/4
, (4.52)

from (4.50), (4.51) and (4.52) we obtain

‖uN (t)− uM (t)‖Yp2,p3,θ ≤ 2c ‖u0,N − u0,M‖Ḣθ . (4.53)

Therefore {uN (t)} is a Cauchy sequence in Yp2,p3,θ, and uN (t)→ u(t) ∈ Yp2,p3,θ.
We observe that uN (t)→ u(t), in Yp2,p3,θ also in the case when p1 = 5, thus by

interpolation (see (2.26)), we get

‖uN (t)− u(t)‖L5
xL

10
T
≤ c‖uN (t)− u(t)‖Yp2,p3,θ → 0, when N →∞,

hence ‖uN (t)‖L5
xL

10
T
→ ‖u(t)‖L5

xL
10
T

, and if ‖uN (t)‖L5
xL

10
T
≤ 2εc0 for all N , then also:

‖u(t)‖L5
xL

10
T
≤ 2εc0.

Now we will prove that u(t) satisfies

u(t) = U(t)u0 +

∫ t

0

U(t− t′)∂x(u)5(t′)dt′.
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In fact by (4.49) and (4.51) we have

‖u(t)− U(t)u0 −
∫ t

0

U(t− t′)∂x(u)5(t′)dt′‖Yp2,p3,θ ≤ ‖u(t)− uN (t)‖Yp2,p3,θ

+ ‖U(t)u0,N − U(t)u0‖Yp2,p3,θ + ‖
∫ t

0

U(t− t′)∂x((uN )5 − u5)(t′)dt′‖Yp2,p3,θ

≤ ‖u(t)− uN (t)‖Yp2,p3,θ + c‖u0,N − u0‖Ḣθ + ‖u(t)− uN (t)‖Yp2,p3,θ2 c(2εc0)4 → 0.

If u(t) is a solution of the IVP (1.14) with initial data u0 and if v(t) is other solution

of the same IVP (1.14) with initial data v0. In order to see continuous dependence

of dates and uniqueness, we follow a similar argument as in (4.50)-(4.53) to obtain

‖u(t)− v(t)‖Yp2,p3,θ ≤ 2c‖u0 − v0‖Ḣθ ,

and this completes our proof. �
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