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WELL-POSEDNESS FOR A HIGHER ORDER NONLINEAR SCHRÖDINGER

EQUATION IN SOBOLEV SPACES OF NEGATIVE INDICES.

XAVIER CARVAJAL

Abstract. We prove that, the initial value problem associated to

∂tu + iα∂2

x
u + β∂3

x
u + iγ|u|2u = 0, x, t ∈ R,

is locally well-posed in Hs for s > −1/4.

1. Introduction

In this work, we study a particular case of the following initial value problem (IVP)

∂tu+ iα∂2
xu+ β∂3

xu+ F (u) = 0, x, t ∈ R, (1)

u(x, 0) = u0(x)

where u is a complex valued function, F (u) = iγ|u|2u + δ|u|2∂xu + ǫu2∂xu, γ, δ, ǫ ∈ C and α, β ∈ R are
constants.

A. Hasegawa and Y. Kodama [7, 12], proposed (1) as a model for propagation of pulse in optical fiber.
We will study the IVP (1) in Sobolev space Hs(R) under the condition δ = ǫ = 0, β 6= 0 (see case iv)
in Teorema 1 below). Our definition of local well-posedness includes: existence, uniqueness, persistence
and continuous dependence of solution on given data (i.e. continuity of application u0 7→ u(t) from X to
C([−T, T ];X)).

If T <∞ we say that the IVP is locally well-posed in X . If some hypothesis in the definition of local
well-posedness fails, we say that the IVP is ill-posed.

Particular cases of (1) are the followings:
• Cubic nonlinear Schrödinger equation (NLS), (α = ∓1, β = 0, γ = −1, δ = ǫ = 0).

iut ± uxx + |u|2u = 0, x, t ∈ R. (2)

Best known local result for the IVP associated to (2) is in Hs(R), s ≥ 0, obtained by Tsutsumi [21].
• Nonlinear Schrödinger equation with derivative (α = −1, β = 0, γ = 0, δ = 2ǫ).

iut + uxx + iλ(|u|2u)x = 0, x, t ∈ R. (3)

Best known result for the IVP associated to (3) is in Hs(R), s ≥ 1/2, obtained by Takaoka [19].
• Complex modified Korteweg-de Vries (mKdV) equation (α = 0, β = 1, γ = 0, δ = 1, ǫ = 0).

ut + uxxx + |u|2ux = 0, x, t ∈ R. (4)
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If u is real, (4) is the usual mKdV equation and Kenig et al. [9], proved the IVP associated to it is locally
well-posed in Hs(R), s ≥ 1/4.

Laurey [15, 14] proved that the IVP associated to (1) is locally well-posed in Hs(R), s > 3/4.
Staffilani [17] improved this result by proving the IVP associated to (1) is locally well-posed in Hs(R),

s ≥ 1/4.
When α, β are functions of t, we proved in [1, 2] local well-posedness in Hs(R), s ≥ 1/4. Also we

studied in [1, 4] the unique continuation property for the solution of (1). Regarding the ill-posedness of
the IVP (1), we proved in [3] the following theorem.

Theorem 1. The mapping data-solution u0 7→ u(t) for the IVP (1) is not C
3 at origin in the following

cases:
i) β = 0, α 6= 0, δ = ǫ = 0, γ 6= 0 for s < 0.
ii) β = 0, α 6= 0, δ 6= 0 or ǫ 6= 0 for s < 1/2.
iii) β 6= 0, δ 6= 0 or ǫ 6= 0 for s < 1/4.
iv) β 6= 0, δ = ǫ = 0, γ 6= 0 for s < −1/4.

In this work, considering the case iv) in Theorem 1, we prove the following theorem.

Theorem 2. The IVP associated to iv),

∂tu+ iα∂2
xu+ β∂3

xu+ iγ|u|2u = 0, x, t ∈ R, (5)

is locally well-posed in Hs(R), s > −1/4.

The following trilinear estimate will be fundamental in the proof of Theorem 2

Theorem 3. Let −1/4 < s ≤ 0, 7/12 < b < 11/12, then we have

‖uvw‖Xs,b−1 ≤ C‖u‖Xs,b‖v‖Xs,b‖w‖Xs,b , (6)

where

‖u‖Xs,b = ‖ < ξ >s< τ − φ(ξ) >b û‖L2
ξL2

τ
,

< ξ >= 1 + |ξ|, φ(ξ) = αξ2 + βξ3.

Theorem 4. The trilinear estimate (6) fails if s < −1/4 and b ∈ R.

Remark 1. 1) As the equation (1) preserves L2 norm, the Theorem 2 permits to obtain global existence
in L2.

2) From Lemma 3 we note that the value 7/12+ is the best possible for the value very near to ρ = 1/4,
in the trilinear estimate (6).

3) The trilinear estimate is valid for all s > 0, because it follows by combing the fact that < ξ >s≤
< ξ − (ξ2 − ξ1) >

s< ξ2 >
s< ξ1 >

s and the estimate (6) for s = 0.
4) We will use the notation ‖u‖{s,b} := ‖u‖Xs,b.
5) When α = 0, β = 1, we have −3/4+ bilinear estimate [10],

‖(uv)x‖{−3/4+,−1/2+} ≤ C‖u‖{−3/4+,1/2+}‖v‖{−3/4+,1/2+}.

Also we have the 1/4 trilinear estimate [20],

‖(uvw)x‖{1/4,−1/2+} ≤ C‖u‖{1/4,1/2+}‖v‖{1/4,1/2+}‖w‖{1/4,1/2+}.
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2. Proof of Theorem 4.

As in [10] consider the set

B := {(ξ, τ);N ≤ ξ ≤ N +N−1/2, |τ − φ(ξ)| ≤ 1},

where φ(ξ) = αξ2 + βξ3. We have |B| ∼ N−1/2. Let us consider v̂ = χB, it is not difficult to see that
‖v‖{s,b} ≤ Ns|B|1/2. Moreover

F(|v|2v) := χB ∗ χB ∗ χ−B &
1

N
χA,

where A is a rectangle contained in B such that |A| ∼ N−1/2.
Therefore

‖ |v|2v‖{s,b−1} =‖ < ξ >s< τ − φ(ξ) >b−1
F(|v|2v)‖L2

ξL2
τ

&Ns 1

N
N−1/4 = Ns−5/4.

As a consequence, for large N the trilinear estimate fails if 3(s− 1/4) < s− 5/4, i.e. if s < −1/4. �

3. Proof of Theorem 3.

To prove Theorem 3, we need the following results from elementary calculus.

Lemma 1. (1) If b > 1/2, a1, a2 ∈ R
∫

R

dx

< x− a1 >2b< x− a2 >2b
∼

1

< a1 − a2 >2b
. (7)

(2) If 0 < c1, c2 < 1, c1 + c2 > 1, a1 6= a2, then
∫

R

dx

|x− a1|c1 |x− a2|c2

.
1

|a1 − a2|(c1+c2−1)
. (8)

(3) Let a ∈ R, c1 ≤ c2, then

|x|c1

< ax >c2

≤
C(c1, c2)

ac1

, (9)

where C(c1, c2) is a constant independent of x.
(4) Let a, η ∈ R, b > 1/2, then

∫

R

dx

< a(x2 − η2) >2b
.

1

|aη|
. (10)

Let f(ξ, τ) =< ξ >s< τ − ξ3 >b û, g(ξ, τ) =< ξ >s< τ − ξ3 >b v̂, h(ξ, τ) =< ξ >s < τ − ξ3 >b ŵ,
η = (ξ, τ), x = (ξ1, τ1), y = (ξ2, τ2).
We have

‖uvw‖{s,b−1} = ‖

∫

R4

f(η+x−y)g(y)h(x)K(η, x, y)dxdy‖L2
η

≤‖K(η, x, y)‖L∞

η L2
x,y

‖f‖L2‖g‖L2‖h‖L2 ,
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where r(ξ, τ) =<ξ>2ρ<τ−φ(ξ)>2(1−b), ρ = −s and

K(η, x, y) =
<ξ+ξ1−ξ2>

2ρ<ξ2>
2ρ<ξ1>

2ρ

r(ξ, τ) <τ1−φ(ξ1)>2b<τ2−φ(ξ2)>2b<τ+τ1−τ2−φ(ξ+ξ1−ξ2)>2b
.

Using (7) we obtain

I(ξ, τ) := ‖K(ξ, τ)‖2
L2

x,y
∼

1

r(ξ, τ)

∫

R2

Gρ(ξ, ξ1, ξ2) dξ1dξ2
<τ−φ(ξ+ξ1−ξ2)−φ(ξ2)+φ(ξ1)>2b

,

where Gρ(ξ, ξ1, ξ2) :=<ξ+ξ1−ξ2>
2ρ<ξ1>

2ρ<ξ2>
2ρ.

For clarity in exposition we consider the case α = 0, β = 1, i.e. φ(ξ) = ξ3. With this consideration we
have

I(ξ, τ) :=
1

<ξ>2ρ<τ−ξ3>2(1−b)

∫

R2

Gρ(ξ,−ξ1,−ξ2)dξ1dξ2
<τ−ξ3+g>2b

,

where g = g(ξ, ξ1, ξ2) = 3(ξ1 − ξ2)(ξ − ξ1)(ξ + ξ2).
Supposing y = τ − ξ3, to get Theorem 3 it is enough to prove

Lemma 2. Let 0 < ρ < 1/4, 7/12 < b < 11/12. Then

I(ξ, y) :=
1

<ξ>2ρ<y>2(1−b)

∫

R2

Gρ(ξ,−ξ1,−ξ2)dξ1dξ2
<y+g(ξ, ξ1, ξ2)>2b

≤ C(ρ, b) <∞,

where C(ρ, b) is a constant independent of ξ and y.

To prove Lemma 2 we need to prove the following lemmas.

Lemma 3. Let ρ < 1/4, then we have

I(0, 0) =

∫

R2

Gρ(0,−ξ1,−ξ2)dξ1dξ2
< g(0, ξ1, ξ2) >2b

=

{

C(ρ, b) <∞, if ρ+ 1/3 < b
∞, if ρ+ 1/3 ≥ b,

where C(ρ, b) is a constant.

Lemma 4. Let ρ < 1/4, b > 7/12, then

I(ξ, 0) =
1

<ξ>2ρ

∫

R2

Gρ(ξ,−ξ1,−ξ2)dξ1dξ2
<g(ξ, ξ1, ξ2)>2b

≤ C(ρ, b),

where C(ρ, b) is a constant independent of ξ.

In the definition of I(ξ, y) if we make the change of variables ξ − ξ1 := ξξ1, ξ + ξ2 := ξξ2 and y = ξ3z,
then I(ξ, y) becomes

I(ξ, z) = p(ξ, z)

∫

R2

Hρ(ξ, ξ1, ξ2)dξ1dξ2
< ξ3(z + F (ξ1, ξ2)) >2b

, (11)

where p(ξ, z) = ξ2/ < ξ3z >2(1−b)< ξ >2ρ, F (ξ1, ξ2) = (2 − (ξ1 + ξ2))ξ1ξ2 and

Hρ(ξ, ξ1, ξ2) =< ξ(1 − (ξ1 + ξ2)) >
2ρ< ξ(1 − ξ1) >

2ρ< ξ(1 − ξ2) >
2ρ .

From here onwards we will suppose z > 0.
Proof of Lemma 3.

By symmetry it is enough to prove that the following integrals

I1(0, 0) :=

∫ ∞

0

∫ ∞

0

Gρ(0,−ξ1,−ξ2)dξ1dξ2
< g(0, ξ1, ξ2) >2b

, I2(0, 0) :=

∫ ∞

0

∫ ∞

0

Gρ(0,−ξ1,ξ2)dξ1dξ2
< g(0, ξ1,−ξ2) >2b
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are finite. We will prove I1(0, 0) is finite, the same proof works to prove I2(0, 0) is finite. Also, by
symmetry we can suppose that 0 ≤ ξ2 ≤ ξ1.

We have
∫ ∞

1

dξ1

∫ ξ1

0

dξ2
Gρ(0,−ξ1,−ξ2)

< g(0, ξ1, ξ2) >2b
=

∫ ∞

1

dξ1

∫ ξ1/2

0

dξ2 +

∫ ∞

1

dξ1

∫ ξ1

ξ1/2

dξ2

= I1,1 + I1,2.

As 0 ≤ ξ2 ≤ ξ1, we have Gρ(0,−ξ1,−ξ2) ≤< ξ1 >
4ρ< ξ2 >

2ρ. In I1,1 we have ξ1/2 < ξ1 − ξ2 < ξ1,
therefore if b > ρ+ 1/3,

I1,1 .

∫ ∞

1

< ξ1 >
4ρ dξ1

∫ ξ1/2

0

< ξ2>
2ρ dξ2

< ξ21ξ2>
2b

(12)

.

∫ ∞

1

< ξ1 >
4ρ

( 1

ξ21
+

1

ξ2+4ρ
1

+
1

ξ2+4ρ
1

∫ 3ξ3

1
/2

1

x2ρdx

(1 + x)2b

)

dξ1 (13)

=C(ρ, b) <∞. (14)

Analogously we can prove that I1,1 = ∞ if b ≤ ρ+ 1/3.
In I1,2 we have ξ1/2 ≤ ξ2 ≤ ξ1, so

I1,2 .

∫ ∞

1

< ξ1 >
4ρ dξ1

∫ ξ1

ξ1/2

< ξ1 − ξ2>
2ρ dξ2

< (ξ1 − ξ2)ξ21>
2b

=

∫ ∞

1

< ξ1 >
4ρ dξ1

∫ ξ1/2

0

< x >2ρ dx

< ξ21x>
2b

=C(ρ, b), b > ρ+ 1/3.

�
To prove Lemmas 2 and 4, the following propositions will be useful.

Proposition 1. Let ρ ≥ 0, b > 1/3 + 2ρ/3, then we have

J2 = ξ2+4ρ

∫

R2

dξ1dξ2
< ξ3(z + F ) >2b

≤ C,

where C is a constant independent of ξ.

Proof: If ξ1 ≤ 0, ξ2 ≤ 0, then |z + F | ≥ |ξ1 + ξ2||ξ1ξ2|. Therefore by Lemma 3 and by symmetry,
it is enough to consider ξ1 ≥ 0. We have |z+F | = |ξ1||(ξ2 +(ξ1 − 2)/2)2 − (ξ1−2)2/4 − z/ξ1|. Let
l2 = (ξ1−2)2/4 + z/ξ1, c(ρ) = (2 + 4ρ)/3, then making change of variable η = ξ2+(ξ1 − 2)/2 and using
(8) and (9) we have

J2 =ξ2+4ρ

∫ ∞

0

dξ1

∫

R

dη

< ξ3ξ1(η2 − l2) >2b

.

∫ ∞

0

dξ1

∫

R

l dx

[|ξ1|l2|x2 − 1|]c(ρ)

.

∫ ∞

0

dξ1
|ξ1|c(ρ)|ξ1 − 2|(1+8ρ)/3

∫

R

dx

|x2 − 1|c(ρ)

.C.
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�

Proposition 2. Let |ξ| > 1, ρ < 1/4, then

J1 = ξ2+4ρ

∫ ∞

0

ξ4ρ
1

∫

R

dξ1dξ2
< ξ3(z + F ) >2b

≤ C,

where C is a constant independent of ξ.

Proof: By Proposition 1 we can suppose ξ1 > 4, so (ξ1 − 2) > ξ1/2. Using (10) and making change of
variables as above, we have

J1 .
ξ2+4ρ

|ξ|3

∫ ∞

4

ξ4ρ
1

ξ1 l
dξ1 ≤ C.

�

Proof of Lemma 4.
a) If |ξ| ≤ 1.
Let A1 = {(ξ1, ξ2)/|ξ1|> 2, |ξ2|> 2}, A2 = {(ξ1, ξ2)/|ξ1| ≤ 2, |ξ2| ≤ 2}, A3 = {(ξ1, ξ2)/|ξ1| ≤ 2, |ξ2| > 2}

and A4 = {(ξ1, ξ2)/|ξ1| > 2, |ξ2| ≤ 2} and consider I(ξ, 0) =
∑4

j=1 Ij(ξ, 0), where Ij(ξ, 0) is defined in the

region Aj . Obviously I2 ≤ C. In A1 we have |ξ − ξ1| > |ξ1|/2 and |ξ + ξ2| > |ξ2|/2, therefore Lemma 3
gives I1 ≤ C. In A3 we have |ξ + ξ2| > |ξ2|/2, and consequently

I3(ξ, 0) .
1

< ξ >2ρ

∫

A3

< ξ2 >
4ρ dξ1dξ2

< (ξ1 − ξ2)ξ2(ξ − ξ1) >2b

=
1

< ξ >2ρ

∫

A3∩{|ξ1−ξ2|>|ξ2|}

+
1

< ξ >2ρ

∫

A3∩{|ξ1−ξ2|≤|ξ2|}

=I3,1(ξ, 0) + I3,2(ξ, 0).

In the first integral, for ρ < 1/4, b > 1/2 we have

I3,1(ξ, 0) .
1

< ξ >2ρ

∫

|ξ2|>2

< ξ2 >
4ρ dξ2

∫

|ξ1|≤2

dξ1
< ξ22(ξ − ξ1) >2b

.
1

< ξ >2ρ

∫

|ξ2|>2

< ξ2 >
4ρ dξ2

ξ22
≤C.

To estimate I3,2(ξ, 0) we make the change of variables η2 = ξ1 − ξ2, η1 = ξ1 and as |ξ1| ≤ 2 we obtain the
same estimate as that for I3,1(ξ, 0).

By symmetry we can estimate I4 in the same manner as I3.
b) If |ξ| > 1.
Let us consider I(ξ, 0) in the form (11) and let B1 = {|ξ1 + ξ2| > 4} and B2 = {|ξ1 + ξ2| ≤ 4}, then
I(ξ, 0) = I1(ξ) + I2(ξ), where Ij(ξ) is defined in Bj . In B1 we have

|2 − (ξ1 + ξ2)| > |ξ1 + ξ2|/2, |1 − (ξ1 + ξ2)| ≤ 5|ξ1 + ξ2|/4, (15)

moreover B1 ⊂ {|ξ1| ≥ 2} ∪ {|ξ2| ≥ 2} =: B1,1 ∪ B1,2 and therefore I1(ξ, 0) ≤ I1,1(ξ) + I1,2(ξ), where
I1,j(ξ) is defined in B1,j ∩B1. In B1,1 we have |ξ1|/2 ≤ |1− ξ1| ≤ 3|ξ1|/2, therefore using (15), we obtain
that I1,1(ξ) . I(0, 0) ≤ C if ρ < 1/4, ρ+ 1/3 < b. In similar manner we have I1,2(ξ) . I(0, 0) ≤ C.

From definition of B2 we have Hρ .< ξ >2ρ< |ξ|+ |ξ||ξ2| >
4ρ, so using symmetry and Propositions 1

and 2, we have I2(ξ) ≤ C <∞ if 0 ≤ ρ < 1/4, b > ρ+ 1/3.



WELL-POSED 7

Proof of Lemma 2.
Let 0 ≤ ρ < 1/4, 7/12 < b < 11/12. Using symmetry and Lemma 4 it is enough to prove

J = p(ξ, z)

∫ ∞

0

∫

R

Hρ(ξ, ξ1, ξ2)dξ1dξ2
< ξ3(z + F (ξ1, ξ2) >2b

≤ C <∞.

By Lemma 4 we can suppose |ξ|3z ≥ 1, because if |ξ|3z < 1 then

< ξ3(z + F ) >−2b≤ 22b < ξ3F >−2b .

Also by symmetry we can suppose |ξ2| ≤ |ξ1|.
Therefore

Hρ(ξ, ξ1, ξ2) . 1 + |ξ|6ρ + |ξ|6ρ|ξ1|
6ρ. (16)

Using Proposition 1 we can suppose |ξ1| > 4 (l−1 ≤ |ξ1|
−1).

a) If |ξ||ξ1| ≤ 1.
We have Hρ .< ξ >6ρ and therefore J ≤ C <∞, by Proposition 1.
b) If |ξ||ξ1| > 1.
i) If |ξ1|

3 ≤ z, |ξ1| ≤ z1/3, we have Hρ(ξ, ξ1, ξ2) . 1 + |ξ|6ρ + |z|2ρ/3|ξ|6ρ|ξ1|
4ρ. Therefore using (10), in

this region we have

ξ2+6ρ|z|2ρ/3

< ξ3z >2(1−b)

∫ |z|1/3

1/|ξ|

|ξ1|
4ρdξ1

∫

R

dη

< ξ3ξ1(η2 − l2) >2b
.

ξ2+6ρ|z|2ρ/3

< ξ3z >2(1−b) |ξ|3

∫ ∞

1/|ξ|

|ξ1|
4ρdξ1

|ξ1|2

.
(|ξ|3z)2ρ/3

< ξ3z >2(1−b)

≤C.

ii) If |ξ1|
3 ≥ z, |ξ1| ≥ z1/3, we can proceed as follows.

By Lemma 4 we can suppose |z + F | ≤ |F |/2, so |F | ≤ 2z, |(2 − (ξ1 + ξ2))ξ1ξ2| ≤ 2z. This implies that
|1 − ξ2||1 − (ξ1 + ξ2)| . 1 + |ξ1| + z2/3.
Therefore

Hρ . (<ξ >4ρ +|ξ|6ρ) + |ξ|4ρ|ξ1|
4ρ+ |ξ|6ρ|ξ1|

2ρ+|ξ|4ρ|ξ1|
2ρ + |ξ|6ρ|ξ1|

4ρ

+ |ξ|4ρz4ρ/3 + |ξ|6ρz4ρ/3 + |ξ|6ρz4ρ/3|ξ1|
2ρ =

8
∑

j=1

lj .

We have,

|ξ|6ρ

< ξ >2ρ
≤ |ξ|4ρ. (17)

To estimate the term that contains l1 =< ξ >4ρ +|ξ|6ρ, we use (17) and Proposition 1.
For terms lj, j = 2, . . . , 5, we use (17) and Propositions 1 and 2 if |ξ| > 1. If |ξ| < 1, we integrate in

the region ξ1 > 1/|ξ| as above.
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In l6 = |ξ|4ρz4ρ/3, we have

|ξ|2|ξ|4ρz4ρ/3

< ξ3z >2(1−b) |ξ|3 < ξ >2ρ

∫ ∞

z1/3

dξ1
ξ21

.
1

(|ξ|3z)(1−4ρ)/3
≤ C.

We estimate l7 = |ξ|6ρz4ρ/3, as in l6 using (17).
Finally in l8 = |ξ|6ρz4ρ/3|ξ1|

2ρ, we have

|ξ|2+6ρz4ρ/3

< ξ >2ρ |ξ|3

∫ ∞

z1/3

|ξ1|
2ρdξ1
ξ21

.
(|ξ|3z)(6ρ−1)/3

< ξ3z >2(1−b)
≤ C.

�

4. Proof of Theorem 2.

Consider a cut-off function ψ ∈ C
∞, such that 0 ≤ ψ ≤ 1,

ψ(t) =

{

1 if |t| ≤ 1
0 if |t| ≥ 2,

(18)

and let ψT (t) := ψ(t/T ). To prove Theorem 2 we need the following result.

Proposition 3. Let −1/2 < b′ ≤ 0 ≤ b ≤ b′ + 1, T ∈ [0, 1], then

‖ψ1(t)U(t)u0‖{s,b} =C‖u0‖Hs (19)

‖ψT (t)

∫ t

0

U(t− t′)F (t′, ·))dt′‖{s,b} ≤CT 1−b+b′‖F (u)‖{s,b′}, (20)

where F (u) := iγ|u|2u.

Proof: The proof of (19) is obvious. The proof of (20) is practically done in [6]. �

Let us consider (5) in its equivalent integral form

u(t) = U(t)u0 −

∫ t

0

U(t− t′)F (u)(t′, ·))dt′. (21)

Note that, if for all t ∈ R, u(t) satisfies:

u(t) = ψ1(t)U(t)u0 − ψT (t)

∫ t

0

U(t− t′)F (u)(t′, ·))dt′, (22)

then u(t) satisfies (21) in [−T, T ]. Let a > 0 and

Xa = {v ∈ Xs,b; ‖v‖s,b ≤ a}. (23)

For v ∈ Xa fixed, let us define

Φ(v) = ψ1(t)U(t)u0 − ψT (t)

∫ t

0

U(t− t′)F (v)(t′, ·))dt′.
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Let ǫ = 1 − b+ b′ > 0, using Proposition 3 and Theorem 3 we obtain

‖Φ(v)‖s,b ≤C‖u0‖Hs + CT ǫ‖F (v)‖s,b′

≤C‖u0‖Hs + CT ǫM3

≤M,

where we took M = 2C‖u0‖Hs , T ǫ ≤ 1/(2CM2).
We can prove that Φ is a contraction in an analogous manner. The proof of the Theorem 1 follows by

using a standard argument, see for example [9, 10].
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