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Persistence of solutions to higher order nonlinear

Schrödinger equation

Xavier Carvajal1, Wladimir Neves1

Abstract

Applying an Abstract Interpolation Lemma, we can show persistence

of solutions of the initial value problem to higher order nonlinear Schrödinger

equation, also called Airy-Schrödinger equation, in weighted Sobolev spaces

X
2,θ, for 0 ≤ θ ≤ 1.

1 Introduction

Motivated by the difficulty question of how to show persistent properties of
solutions to dispersive equations in the weighted Sobolev spaces, we proved
an Abstract Interpolation Lemma. Then, applying this lemma we were able to
show persistence for the so called Airy-Schrödinger equation in weighted Sobolev
spaces Xs,θ, see definition in equation (1.4), for 0 ≤ θ ≤ 1 and s = 2.

Here, we have focus on the exponent of the weighted, that is, we have been
concentrated on X

2,θ for θ < 1. In this direction our result is new, moreover
to higher order nonlinear Schrödinger equations. We address the reader the
paper of Nahas and Ponce [18] for similar results on the persistent properties
of solutions to semi-linear Schrödinger equation in weighted Sobolev spaces.
Although, that paper used different technics from ours.

1.1 Purpose and some results

In this paper we describe how to obtain some new results on the persistent
properties in weighted Sobolev spaces for solutions of the initial value problem
(IVP)

{
∂tu+ i a ∂2xu+ b ∂3xu+ i c |u|2u+ d |u|2∂xu+ e u2∂xū = 0, (t, x) ∈ R2,

u(x, 0) = u0(x),

(1.1)
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where u is a complex-valued function, a, b, c, d and e are real parameters and
u0 is a given initial-data. This model was proposed by Hasegawa and Kodama
in [12, 16] to describe the nonlinear propagation of pulses in optical fibers. In
literature, it is called as a higher order nonlinear Schrödinger equation or also
Airy-Schrödinger equation. Moreover, as we are going to show below in this first
section, depending on the values of the constants a, b, c, d and e, (1.1) describes
many interesting known problems.

It was shown in [17] that the flow associated to the IVP (1.1) leaves the
following quantity

I1(v(t)) :=

∫

R

|v(x, t)|2 dx, (1.2)

conserved in time. Also, when be 6= 0 we have the following conserved quantity

I2(v(t)) := C1

∫

R

|∂xv(x, t)|
2 dx+ C2

∫

R

|v(x, t)|4 dx

+ C3 Im

∫

R

v(x, t)∂xv(t, x)dx,

(1.3)

where C1 = 3 b e, C2 = −e (e+ d)/2 and C3 = (3 b c− a (e + d)).

Regarding the IVP (1.1) with b 6= 0, Laurey in [17] showed that the IVP
is locally well-posed in Hs(R) with s > 3/4, and using the quantities (1.2)
and (1.3) she proved the global well-posedness in Hs(R) with s ≥ 1. In [22]
Staffilani established the local well-posedness in Hs(R) with s ≥ 1/4, for the
IVP associated to (1.1), improving Laurey’s result.

In the problem (1.1), when a, b are real functions of t, (b 6= 0), was proved
in [4] the local well-posedness in Hs(R), for s ≥ 1/4. Moreover, in [6] when
c = (d− e) a/3 b, global well-posedness was established in Hs(R) with s > 1/4.
Also, in [5] one has the unique continuation property for the solution of (1.1).

One stress the importance of the weighted Sobolev spaces. This question
goes back to work of Kato [13], where the space X2r,r for (r = 1, 2, . . .) was first
introduced to prove well-posedness with weight for the KdV and generalized
KdV equations. Following Kato, we observe that functions in the Sobolev spaces
Hs do not necessarily decay fast as |x| → ∞. Therefore, since we want to prove
well-posedness in spaces of fast-decaying functions, a simple choice is a weighted
Sobolev space Hs(R) ∩ L2

(
ω(x) dx

)
for some appropriated weight function ω,

see [13].

One of the purposes of the present paper is to show well-posedness of (1.1),
with b 6= 0, in the weighted Sobolev space X2,θ, for θ ∈ [0, 1]. The most difficult
question in this work is to prove the persistence in the weighted Sobolev space
to the solution u(t) of the IVP (1.1) given by the global theory in H2, which
seems to be so regular, but it is not the point of the paper. To establish this,
we approximate the solution by a sequence of smoothing solutions of (1.1) (see
Lemma 3.4). We show that this sequence belongs to a family A of functions
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(see conditions (2.9)-(2.12)) where is possible apply the Abstract Interpolation
Lemma (Lemma 2.2), which permits to obtain the persistence in X

2,θ for this
sequence of smoothing solutions. Then passing to the limit in this sequence,
we get the persistence for the solution u(t) in X

2,θ as desired. Moreover, since
X

s,1 ⊆ X
s,θ, for all s ∈ R and θ ∈ [0, 1], see Remark 1.1, we have also extended

the well-posedness results in [13] for the KdV and generalized KdV obtained in
the weighted Sobolev space X

2,1. The authors would like to observe that, as it
is known by them, it is the first time in literature, where the weighted Sobolev
space X

s,θ for θ ∈ [0, 1] appears.

An outline of this paper follows. In the rest of this section we fix the notation,
give the definition of well-posedness and present some background concerning
the theory of well-posedness for the Airy-Schrödinger equation. The Abstract
Interpolation Lemma is given at Section 2. In Section 3, first we show some
conserved quantities, and prove a nonlinear estimate. Then, we formulate the
approximated problems associated to the IVP (1.1) and prove Lemma 3.4, which
is important to show Theorem 3.7 at the end of this section.

1.2 Notation and background

At this point we fix some functional notation used in the paper. By dx we
denote the Lebesgue measure on R and, for θ ≥ 0,

dµθ(x) := (1 + |x|2)θ dx,

dµ̇θ(x) := |x|2θ dx

denote the Lebesgue-Stieltjes measures onR. Hence, given a setX , a measurable
function f ∈ L2(X ; dµθ) means that

‖f‖2L2(X;dµθ)
=

∫

X

|f(x)|2 dµθ(x) <∞.

When X = R, we write: L2(dµθ) ≡ L2(R; dµθ), and for simplicity

L2 ≡ L2(dµ0), L2(dµ) ≡ L2(dµ1).

Analogously, for the measure dµ̇θ. We will use the Lebesgue space-time Lp
xL

q
τ

endowed with the norm

‖f‖Lp
xL

q
τ
=

∥∥‖f‖Lq
τ

∥∥
Lp

x
=

( ∫

R

(∫ τ

0

|f(x, t)|qdt
)p/q

dx
)1/p

(1 ≤ p, q <∞).

When the integration in the time variable is on the whole real line, we use
the notation ‖f‖Lp

xL
q
t
. The notation ‖u‖Lp is used when there is no doubt

about the variable of integration. Similar notations when p or q are ∞. As
usual, Hs ≡ Hs(R), Ḣs ≡ Ḣs(R) are the classic Sobolev spaces in R, endowed
respectively with the norms

‖f‖Hs := ‖f̂‖L2(dµs), ‖f‖Ḣs := ‖f̂‖L2(dµ̇s).
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In this work, we study the solutions of (1.1) in the Sobolev spaces with weight
X

s,θ, defined as
X

s,θ := Hs ∩ L2(dµθ), (1.4)

with the norm
‖f‖Xs,θ := ‖f‖Hs + ‖f‖L2(dµθ).

Remark 1.1. We remark that, Xs,1 ⊆ X
s,θ, for all s ∈ R and θ ∈ [0, 1]. Indeed,

using Hölder’s inequality

‖f‖L2(dµ̇θ) ≤ ‖f‖1−θ
L2 ‖f‖θL2(dµ̇).

The following definition tell us in which sense we consider the well-posedness
for the IVP (1.1).

Definition 1.2. Let X be a Banach space and T > 0. We say that the IVP
(1.1) is locally well-posed in X, if the solution u uniquely exists in certain time
interval [−T, T ] (unique existence), describes a continuous curve in X in the
interval [−T, T ] whenever initial data belongs to X (persistence), and varies
continuously depending upon the initial data (continuous dependence), that is,
continuity of the application

u0 7→ u from X to C([−T, T ];X).

Moreover, we say that the IVP (1.1) is globally well-posed in X if the same
properties hold for all time T > 0. If some hypotheses in the definition of local
well-posed fail, we say that the IVP is ill-posed.

Particular cases of (1.1) are the following:

• Cubic nonlinear Schrödinger equation (NLS), (a = ±1, b = 0, c = −1,
d = e = 0).

iut ± uxx + |u|2u = 0, x, t ∈ R. (1.5)

The best known local result for the IVP associated to (1.5) is in Hs(R),
s ≥ 0, obtained by Tsutsumi [25]. Since the L2 norm is preserved in (1.5),
one has that (1.5) is globally well-posed in Hs(R), s ≥ 0.

• Nonlinear Schrödinger equation with derivative (a = −1, b = 0, c = 0,
d = 2e).

iut + uxx + iλ(|u|2u)x = 0, x, t ∈ R, (1.6)

where λ ∈ R. The best known local result for the IVP associated to (1.6)
is in Hs(R), s ≥ 1/2, obtained by Takaoka [24]. Colliander et al. [9]
proved that (1.6) is globally well-posed in Hs(R), s > 1/2.
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• Complex modified Korteweg-de Vries (mKdV) equation (a = 0, b = 1,
c = 0, d = 1, e = 0)

ut + uxxx + |u|2ux = 0, x, t ∈ R. (1.7)

If u is real, (1.7) is the usual mKdV equation. Kenig et al. [15] proved
that the IVP associated to it is locally well-posed in Hs(R), s ≥ 1/4 and
Colliander et al. [10], proved that (1.7) is globally well-posed in Hs(R),
s > 1/4.

• When a 6= 0 and b = 0, we obtain a particular case of the well-known
mixed nonlinear Schrödinger equation

ut = iauxx + λ(|u|2)xu+ g(u), x, t ∈ R, (1.8)

where g satisfies some appropriated conditions and λ ∈ R is a constant.
Ozawa and Tsutsumi in [19] proved that for any ρ > 0, there is a positive
constant T (ρ) depending only on ρ and g, such that the IVP (1.8) is locally
well-posed in H1/2(R), whenever the initial data satisfies

‖u0‖H1/2 ≤ ρ.

There are other dispersive models similar to (1.1), see for instance [1, 8, 11, 20,
21, 23] and the references therein.

Remark 1.3. 1. We can suppose C3 = 0 in (1.3). In fact, when C3 6= 0 we
have the following gauge transformation

v(x, t) = exp
(
ia x+ i(aα2 + b α3)t

)
u(x+ (2aα+ 3bα2)t, t),

where

α =
3 b c− a(d+ e)

6 b e
.

Then, u solves (1.1) if and only if v satisfies the equation

∂tv + i(a+ 3α b)∂2xv + b ∂3xv + i(c− α(e − d)) |v|2v + d |v|2∂xv + e v2∂xv̄ = 0,

and in this equation we have the factor C3 = 0.
2. Let c = (d−e) a/3 b and u(x, t) be a solution of (1.1). If we choose a new

unknown function v(x, t) related to u by the relation

v(x, t) = exp
(
i
a

3b
x+ i

a3

27b2
t
)
u(x+

a2

3b
t, t).

Then, u solves (1.1) if and only if v satisfies the complex modified Korteweg-de
Vries type equation

∂tv + b ∂3xv + d |v|2∂xv + e v2∂xv̄ = 0.
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2 The Abstract Interpolation Lemma

The aim of this section is to prove an interpolation lemma with weight concern-
ing space time-value functions.

Let f be a function from [−T, T ] in Hs(R) for each T > 0 and s > 1/2. We
suppose that for all t ∈ [−T, T ], f satisfies the following conditions:

(i) For each t ∈ [−T, T ], L
1
(
ξ ∈ R; f(t, ξ) 6= 0

)
> 0, where L

1
(
E
)
is the

Lebesgue measure of measurable set E ⊂ R.
(ii) There exist constants C0, C̃0 > 0, C̃1 ≥ 0 (independent of f , t), such

that

‖f(t)‖2L2 ≤ C0 ‖f(0)‖2L2, (2.9)

‖f(t)‖2L2(dµ̇) ≤ C̃0 ‖f(0)‖
2
L2(dµ̇) + C̃1. (2.10)

(iii) For all θ ∈ [0, 1], there exist Θ > 0 (independent of f , t) and γ1 ∈ (0, 1),
such that ∫

{|f(t)|2<Θ}

|f(t)|2 dµ̇θ ≤ γ1

∫

R

|f(t)|2 dµ̇θ. (2.11)

(iv) There exist R > 0 and γ2 ∈ (0, 1) (both independent of f), such that

∫

{R\(−R,R)}

|f(0)|2 dµ̇ ≤ γ2

∫

R

|f(0)|2 dµ̇. (2.12)

We denote by A a set of functions that satisfies the above conditions. The
following remark shows a non-enumerable number of non-empty sets A.

Remark 2.1. Let R0, T > 0 be constants and b > 0, such that for each θ ∈ [0, 1],

∫

{R0≤|ξ|≤R0+b}

ξ2θdξ ≤
1

2(T + 1)2

∫

{0≤|ξ|≤R0}

ξ2θdξ. (2.13)

Let AA
0 the set of the continuous functions in R such that f(ξ) = 0 if |ξ| > R0+b,

f(ξ) = A if |ξ| ≤ R0 and 0 ≤ f(ξ) ≤ A, where A is any positive real number,
fixed. Now, we set

A
A
1 :=

{
f(t, ξ) = f(ξ)(1 + |t|); t ∈ [−T, T ], f(ξ) ∈ A

A
0

}
.

Then, for each A, AA
1 is a like set A. In fact, condition (i) is clearly satisfied.

The condition (ii) is satisfied with C0 = C̃0 = 1 + T . The condition (iv) is
satisfied with R = R0 + b for all γ2 ∈ (0, 1), since the first integral in (2.12) is
null. And the condition (iii) is satisfied with Θ = A2 and γ1 = 1/2, since (2.13)
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implies
∫

{|f(t)|2<A2}

ξ2θ|f(t, ξ)|2dξ ≤ (1 + T )2A2

∫

{R0≤|ξ|≤R0+b}

ξ2θdξ

≤
(1 + T )2A2

2(1 + T )2

∫

{0≤|ξ|≤R0}

ξ2θdξ

≤
1

2

∫

{0≤|ξ|≤R0}

ξ2θ|f(t, ξ)|2dξ

≤
1

2

∫

R

ξ2θ|f(t, ξ)|2dξ.

Lemma 2.2. For each θ ∈ (0, 1), there exists a positive constant ρ(θ), such
that, for each t ∈ [−T, T ]

‖f(t)‖2L2(dµ̇θ)
≤ ‖f(t)‖2ρHs

(
K0 ‖f(0)‖

2
L2 +K1 ‖f(0)‖

2
L2(dµ̇θ)

+K2

)
(2.14)

for all f ∈ A, where

K0 = C0R
2θ

(
4

Θ

)ρ+1

, K1 =
C̃0

ρ(1− γ2)

(
4

Θ

)ρ

, K2 =
C̃1

ρR2θρ
.

Proof. 1. For simplicity of notation, we sometimes write f(t, ξ) ≡ f(ξ) and
f(0, ξ) ≡ f0(ξ). Let θj > 0, (j = 0, 1), constants independents of t, and for
θ ∈ [0, 1] set

Iθ11 :=

∫

R

|ξ|2θ |f(ξ)|2 χ{|f(ξ)|2>θ1} dξ

Iθ12 := θ1

∫

R

|ξ|2θ χ{|f(ξ)|2>θ1} dξ,

Iθ13 :=

∫

R

|ξ|2θ |f(ξ)|2 χ{|f(ξ)|2≤θ1} dξ,

where χA is the characteristic function of the set A. Therefore, we have

I :=

∫

R

|ξ|2θ |f(ξ)|2 dξ = Iθ11 + Iθ13 = Iθ11 − θ0I
θ1
2 + Iθ13 + θ0I

θ1
2 .

Moreover, it is clear that Iθ12 < Iθ11 , indeed

Iθ11 − Iθ12 =

∫

R

|ξ|2θ
(
|f(ξ)|2 − θ1

)
χ{|f(ξ)|2>θ1} dξ > 0.

Hence, θ0I
θ1
2 < θ0I

θ1
1 < θ0 (I

θ1
1 + Iθ13 ) = θ0 I. Therefore, we have

(1− θ0) I < I − θ0I
θ1
2 = Iθ11 − θ0I

θ1
2 + Iθ13 . (2.15)

2. Claim ♯1: There exist θ1 > 0 independent of f , t ∈ [−T, T ], and a positive
constant β < 1, such that Iθ13 < βIθ11 .

7



Proof of Claim ♯1: We must show that
∫

R

|ξ|2θ |f(t, ξ)|2 χ{|f |2≤θ1} dξ ≤ β

∫

R

|ξ|2θ |f(t, ξ)|2 χ{|f |2>θ1} dξ

= β

∫

R

|ξ|2θ |f(t, ξ)|2 dξ

− β

∫

R

|ξ|2θ |f(t, ξ)|2 χ{|f |2≤θ1} dξ.

Therefore, it is enough to show that
∫

R

|ξ|2θ |f(t, ξ)|2 χ{|f |2≤θ1} dξ ≤
β

1 + β

∫

R

|ξ|2θ |f(t, ξ)|2 dξ,

which is satisfied since f ∈ A. Consequently, we take θ1 = Θ of inequality
(2.11).

3. Now from item 2, we are going to show the existence of a positive constant
α < 1/2, such that

Iθ13 < α(Iθ11 + Iθ13 ) = αI. (2.16)

Indeed, we have

Iθ13 < α(Iθ11 + Iθ13 ) ⇔ (1− α)Iθ13 < α Iθ11

⇔ Iθ13 <
α

1− α
Iθ11 .

Therefore, it is enough to take β < 1 and, we have

0 < α =
β

1 + β
<

1

2
.

Now, we fix θ0 = (3/4− α) > 1/4 and, from (2.15), (2.16), we obtain

I <
Iθ11 − θ0I

θ1
2

1− (θ0 + α)
= 4

(
Iθ11 − θ0I

θ1
2

)
. (2.17)

4. Claim ♯2: There exist N1 ∈ N and a constant C1 > 0 both independent
of f and t, such that, for all η ≥ N1

∫

{|ξ|<η}

|f(ξ)|2|ξ|2 dξ ≤ C1

∫

{|ξ|<η}

|f0(ξ)|
2|ξ|2 dξ + C̃1.

Proof of Claim ♯2: Equivalently, we have to show that
∫

R

|f(ξ)|2|ξ|2 dξ −

∫

{|ξ|≥η}

|f(ξ)|2|ξ|2 dξ

≤ C1

∫

R

|f0(ξ)|
2|ξ|2 dξ − C1

∫

{|ξ|≥η}

|f0(ξ)|
2|ξ|2 dξ + C̃1,
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for each η ≥ N1. Hence using (2.10) and supposing C1 > C̃0, it is sufficient to
prove that

C̃1 + C̃0

∫

R

|f0(ξ)|
2|ξ|2 dξ −

∫

{|ξ|≥η}

|f(ξ)|2|ξ|2 dξ

≤ C1

∫

R

|f0(ξ)|
2|ξ|2 dξ − C1

∫

{|ξ|≥η}

|f0(ξ)|
2|ξ|2 dξ + C̃1.

By a simple algebraic manipulation, it is sufficient to show that

C1

∫

{|ξ|≥η}

|f0(ξ)|
2|ξ|2 dξ ≤

(
C1 − C̃0

) ∫

R

|f0(ξ)|
2|ξ|2 dξ

+

∫

{|ξ|≥η}

|f(ξ)|2|ξ|2 dξ.

Therefore, it is enough to show that

∫

{|ξ|≥η}

|f0(ξ)|
2|ξ|2 dξ ≤

C1 − C̃0

C1

∫

R

|f0(ξ)|
2|ξ|2 dξ,

which it is true for f ∈ A. Consequently, we take N1 = R of inequality (2.12).

5. Finally, we estimate Iθ11 − θ0I
θ1
2 .

If θ = 0, 1 by (2.9) and (2.10) is obvious that

Iθ11 − θ0I
θ1
2 ≤ C0

∫

R

|ξ|2θ |f0(ξ)|
2θ dξ.

Consequently, we consider in the following θ ∈ (0, 1).

Iθ11 − θ0I
θ1
2 =

∫

R

(
|ξ|2θ |f(ξ)|2 − θ0θ1|ξ|

2θ
)
χ{|f(ξ)|2>θ1} dξ

=

∫

R

(
( |ξ| |f(ξ)|1/θ )2θ − ((θ0θ1)

1/2θ|ξ| )2θ
)
χ{|f(ξ)|2>θ1} dξ.

For each η > 0, let ϕ(η) = η2θ. Hence, ϕ′(η) = 2 θ η2θ−1 > 0 and, we have

Iθ11 − θ0I
θ1
2 =

∫

R

∫ |ξ| |f(ξ)|1/θ

(θ0θ1)1/2θ|ξ|

ϕ′(η) dη dξ

= 2θ

∫ ∞

0

η2θ−1

∫

R

χE(η)(ξ) dξ dη

= 2θ

∫ ∞

0

η2θ−1
L

1
(
(E(η)

)
dη,

where

E(η) =
{
ξ ∈ R / |f(ξ)|1/θ|ξ| > η

}⋂{
ξ ∈ R / κ |ξ| < η, κ = (θ0θ1)

1/2θ
}
.
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We observe that,

L
1
(
(E(η)

)
≤

∫

{κ |ξ|<η}

|f(ξ)|2/θ|ξ|2

η2
dξ.

Hence we obtain

Iθ11 − θ0I
θ1
2 ≤ 2θ

∫ ∞

0

η2θ−1

∫

{κ |ξ|<η}

|f(ξ)|2/θ |ξ|2

η2
dξ dη

≤ 2θ ‖f‖
(2/θ)−2
Hs

∫ ∞

0

η2θ−3

∫

{κ |ξ|<η}

|f(ξ)|2 |ξ|2 dξ dη.

From item 4 and applying (2.9), it follows that

Iθ11 − θ0I
θ1
2 ≤ 2θ ‖f(t)‖

(2/θ)−2
Hs

∫ N1

0

η2θ−3

∫

{κ |ξ|<η}

|f(ξ)|2
η2

κ2
dξ dη

+ 2θ ‖f(t)‖
(2/θ)−2
Hs

∫ ∞

N1

η2θ−3

∫

{κ |ξ|<η}

|f(ξ)|2 |ξ|2 dξ dη

≤
C0 N

2θ
1

κ2
‖f(t)‖

(2/θ)−2
Hs

∫

R

|f0(ξ)|
2 dξ

+ 2θ C1 ‖f(t)‖
(2/θ)−2
Hs

∫

R

|f0(ξ)|
2 |ξ|2

∫

{η>κ |ξ|}

η2θ−3 dη dξ + Ξ

=
C0 N

2θ
1

κ2
‖f(t)‖

(2/θ)−2
Hs

∫

R

|f0(ξ)|
2 dξ

+
θ

1− θ
C1 ‖f(t)‖

(2/θ)−2
Hs

∫

R

|f0(ξ)|
2 |ξ|2 |ξ|2θ−2κ2θ−2 dξ + Ξ

=

(
4

θ1

)1/θ

C0 N
2θ
1 ‖f(t)‖

(2/θ)−2
Hs

∫

R

|f0(ξ)|
2 dξ+

+

(
4

θ1

)(1−θ)/θ
C1 θ

1− θ
‖f(t)‖

(2/θ)−2
Hs

∫

R

|f0(ξ)|
2 |ξ|2θ dξ + Ξ,

where

Ξ =
θC̃1‖f(t)‖

(2/θ)−2
Hs

(1 − θ)N
2(1−θ)
1

.

3 Statement of the well-posedness result

This is the section where the well-posedness of the Cauchy problem (1.1) in
weighted Sobolev space X

2,θ, for θ ∈ [0, 1] is proved.
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3.1 A priori estimates

Lemma 3.1. If u(t) is a solution of the IVP (1.1) with u(0) in H2, then for
each T > 0,

‖u(t)‖L2 = ‖u(0)‖L2, (3.18)

‖ux(t)‖L2 ≤ 2‖ux(0)‖L2 + C |C2/C1| ‖u(0)‖
3
L2 + 2|C3/C1| ‖u(0)‖L2, (3.19)

for all t ∈ [−T, T ]. Moreover, we have

‖uxx(t)‖
2
L2 ≤

(
‖uxx(0)‖

2
L2 + ~

)
(1 + T ) e~T , (3.20)

where ~ = ~(‖u0‖L2 , ‖u0x‖L2) is a continuous function with ~(0, 0) = 0.

Proof. The inequalities (3.18) and (3.19) are consequence of conserved laws

(1.2), (1.3) and the Gagliardo- Nirenberg inequality ‖v‖L4 ≤ ‖v‖
3/4
L2 ‖vx‖

1/4
L2 , see

[7] and [17]. For inequality (3.20), we address [17].

Proposition 3.2. Let u be a solution of the IVP (1.1). If u(t) ∈ X
s,1 for each

t ∈ [−T, T ], with s ≥ 3, then

‖u(t)‖2L2(dµ̇) ≤ ea0T (‖u0‖
2
L2(dµ̇) + a0~0T ),

for all t ∈ [−T, T ], where a0 := 2|a|+ 3|b|+ (|d+ e|)/2 and

~0 = ~0(‖u(0)‖L2, ‖ux(0)‖L2 , ‖uxx(0)‖L2)

is a continuous function with ~0(0, 0, 0) = 0.

Proof. 1. First, let us consider a convenient function, i.e. ϕn ∈ C∞(R), ϕn

a non-negative even function, such that, for each x ≥ 0, 0 ≤ ϕn(x) ≤ x2,

0 ≤ ϕ′
n(x) ≤ 2x and |ϕ

(j)
n (x)| ≤ 2, (j = 2, 3). Moreover, for 0 ≤ x ≤ n,

ϕn(x) = x2, and for x > 10n, ϕn(x) = 10n2.

2. Now, multiplying the equation (1.1) by ϕnū and taking the real part, we
get after integration by parts,

∂

∂t

∫

R

ϕn|u|
2dx+ 2aℜ

(
i

∫

R

ϕnūuxxdx

)

+ 2bℜ

(∫

R

ϕnūuxxxdx

)
+ 2cℜ

(
i

∫

R

ϕn|u|
4dx

)

+ 2dℜ

(∫

R

ϕnū|u|
2uxdx

)
+ 2eℜ

(∫

R

ϕnūu
2ūxdx

)
= 0.

(3.21)

The term with coefficient c is zero. Integrating by parts two times the integral
with coefficient b, we obtain

∫

R

ϕnūuxxxdx =

∫

R

ϕnūxxuxdx+ 2

∫

R

ϕ′
nūxuxdx+

∫

R

ϕ′′
nuxūdx. (3.22)

11



Integrating by parts the first term in the right-hand side of (3.22)
∫

R

ϕnūxxuxdx = −

∫

R

ϕnuūxxxdx −

∫

R

ϕ′
nuūxxdx, (3.23)

and integrating by parts the second term in the right-hand side of (3.22), we
have

2

∫

R

ϕ′
nūxuxdx = −2

∫

R

ϕ′′
nūxudx− 2

∫

R

ϕ′
nūxxudx. (3.24)

Now, combining the equations (3.22)-(3.24), we get
∫

R

ϕnūuxxxdx = −

∫

R

ϕnuūxxxdx− 3

∫

R

ϕ′
nūxxudx

− 2

∫

R

ϕ′′
nūxudx+

∫

R

ϕ′′
nuxūdx,

and thus

2ℜ

(∫

R

ϕnūuxxxdx

)
= −3ℜ

∫

R

ϕ′
nūxxudx−ℜ

∫

R

ϕ′′
nūxudx. (3.25)

Integrating by parts the integral with coefficient a in (3.21)
∫

R

ϕnuxxūdx = −

∫

R

ϕnūxuxdx−

∫

R

ϕ′
nūuxdx.

Therefore,

ℜ

(
i

∫

R

ϕnūuxxdx

)
= ℑ

(∫

R

ϕ′
nūuxdx

)
. (3.26)

Now, we consider the integral with coefficient d in (3.21) and integrating by
parts, we have
∫

R

ϕnū|u|
2uxdx = −

∫

R

ϕnuū
2uxdx− 2

∫

R

ϕnu
2ūūxdx−

∫

R

ϕ′
nu

2ū2dx,

and this inequality implies

ℜ

(∫

R

ϕnū|u|
2uxdx

)
= −

1

4

∫

R

ϕ′
n|u|

4dx. (3.27)

Finally, we consider the last term, that is, with coefficient e

ℜ

(∫

R

ϕnu
2ūūxdx

)
= ℜ

(∫

R

ϕnū|u|
2uxdx

)
= −

1

4

∫

R

ϕ′
n|u|

4dx. (3.28)

3. From (3.21) and (3.25)-(3.28), we obtain

∂

∂t

∫

R

ϕn|u|
2dx = − 2aℑ

(∫

R

ϕ′
nūuxdx

)
+ 3bℜ

∫

R

ϕ′
nūxxudx

+ bℜ

∫

R

ϕ′′
nūxudx+

(d+ e)

2

∫

R

ϕ′
n|u|

4dx,

12



and using the properties of ϕn, we get

∂

∂t

∫

R

ϕn|u|
2dx ≤2|a|

∫

R

x2|u|2dx+ 2|a|

∫

R

|ux|
2dx+ 3|b|

∫

R

x2|u|2dx

+ 3|b|

∫

R

|uxx|
2dx+ |b|

∫

R

|u|2dx+ |b|

∫

R

|ux|
2dx

+
|d+ e|

2

∫

R

x2|u|2dx +
|d+ e|

2

∫

R

|u|6dx.

Now, passing to the limit as n→ ∞ and applying the Dominated Convergence
Theorem

∂

∂t
‖u(t)‖2L2(dµ̇) ≤ a0

(
‖u(t)‖2L2(dµ̇) +A

)
,

where A = ‖u(0)‖2L2 +(1+‖u(0)‖4L2) supt∈R
‖ux(t)‖

2
L2 +supt∈R

‖uxx(t)‖
2
L2 . Ob-

serve that by (3.19) and (3.20)

A ≤ ~0(‖u(0)‖L2, ‖ux(0)‖L2 , ‖uxx(0)‖L2) <∞,

where ~0 is a continuous function with ~0(0, 0, 0) = 0. Now, applying Gronwall’s
inequality, we have for all t ∈ [0, T ]

‖u(t)‖2L2(dµ̇) ≤ ea0T
(
‖u(0)‖2L2(dµ̇) + a0 T A

)
. (3.29)

4. Let k0 be a non-zero real parameter and set ũ(x, t) := u(x, k0 t). Since u
is a solution of (1.1) for every t ∈ R, then ũ is a global solution of the following
Airy-Schrödinger equation

∂tũ+ i ã ∂2xũ+ b̃ ∂3xũ+ i c̃ |ũ|2ũ+ d̃ |ũ|2∂xũ+ ẽ ũ2∂x ¯̃u = 0,

where ã = k0 a, . . . , ẽ = k0 e. Therefore, we have an analogously inequality for
ũ, that is

‖ũ(t)‖2L2(dµ̇) ≤ eã0T̃
(
‖u(0)‖2L2(dµ̇) + ã0 T̃ A

)
,

for all t ∈ [0, T̃ ], where ã0 = |k0| a0. Now, taking T̃ = T and k0 = −1, we obtain
that the inequality (3.29) is valid for all t ∈ [−T, T ].

3.2 Unitary group and non-linear estimate

We begin defining the unitary group U(t) as the solution of the linear initial
value problem associated to (1.1),

{
∂tu+ ia ∂2x u+ b ∂3xu = 0,

u(x, 0) = u0(x).
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Hence, we have

Û(t)u0(ξ) = exp
(
it(aξ2 + bξ3)

)
û0(ξ). (3.30)

For convenience, we define the non-linear part of equation in (1.1) as

F (u) := ic |u|2u+ d |u|2∂xu+ e u2∂xū. (3.31)

Next we recall a well known result, see for instance [4, 15].
If f ∈ L1

xL
2
t , u0 ∈ Ḣ1/4 and U(t) is the unitary group as in (3.30). Then,

there exists a constant C > 0, such that

∥∥∥∥∂x
∫ t

0

U(t− t′)f(x, t′)dt′
∥∥∥∥
L2

x

≤ C ‖f‖L1
xL

2
t

(3.32)

and
‖U(t′)u0‖L4

xL
∞

t
≤ C ‖u0‖Ḣ1/4 . (3.33)

This result enable us to prove the following

Proposition 3.3. Let u ∈ C(R, H2) be the solution of IVP (1.1), then

‖u‖L4
xL

∞

t
≤C ‖u(0)‖Ḣ1/4 + C

∫ t

0

(‖u(t′) ‖H1/2+‖u(t′) ‖2H2

+ ‖u(t′) ‖2H1/2+‖u(t
′) ‖H2)dt′, (3.34)

where C is a positive constant.

Proof. In order to prove this inequality we rely on the integral equation form

u(t) =U(t)u0 −

∫ t

0

U(t− τ)F (u)(τ)dτ,

where F (u) is given by (3.31). The linear estimate (3.33) shows that if u(0) ∈ H2

then for any t > 0

‖u‖L4
xL

∞

t
≤ C‖u(0)‖Ḣ1/4 + C

∫ t

0

(‖F (u)‖L2
x
+ ‖ ∂xF (u)‖L2

x
)dt′. (3.35)

First, we estimate ‖F (u)‖L2
x
. By the immersions ‖u(t)‖L∞

x
≤ C‖u(t)‖H1/2+ and

‖u(t)‖L4
x
≤ C‖u(t)‖Ḣ1/4 , it follows that

‖ |u|2u(t′) ‖L2
x
≤‖u(t′) ‖L∞

x
‖u2(t′) ‖L2

x
≤ C‖u(t′) ‖H1/2+‖u(t′) ‖2L4

x

≤C‖u(t′) ‖H1/2+‖u(t′) ‖2
Ḣ1/4 , (3.36)

and

‖ |u|2ux(t
′) ‖L2

x
≤ ‖u(t′) ‖2L∞

x
‖ux(t

′) ‖L2
x
≤ C‖u(t′) ‖2H1/2+‖u(t

′) ‖Ḣ1 . (3.37)
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Analogously, we treat the term u2∂xū.
Now consider ‖∂xF (u)‖L2

x
, we estimate the term |u|2ux. The estimates for

the other terms are similar. Using Leibniz rule, it is easy to see that

‖∂x(|u|
2ux)(t

′)‖L2
x
≤‖ūu2x(t

′) ‖L2
x
+ ‖ |ux|

2u(t′) ‖L2
x
+ ‖ |u|2uxx(t

′) ‖L2
x

≤C‖u(t′) ‖H1/2+‖u(t′) ‖2H2 + ‖u(t′) ‖2H1/2+‖u(t
′) ‖H2 .

(3.38)

Hence combining (3.35)-(3.38) we conclude (3.34).

3.3 Approximated problem

Let X be a Banach space, u0 ∈ X and (uλ0 )λ>0 a family of regular functions,
such that

uλ0 → u0 in X,

when λ→ ∞. For each λ > 0, we consider the following family of approximated
problems obtained from (1.1)

{
∂tu

λ + ia ∂2xu
λ + b ∂3xu

λ + ic |uλ|2uλ + d |uλ|2∂xu+ e uλ
2
∂xū

λ = 0, x, t ∈ R,

uλ(x, 0) = uλ0 (x).

(3.39)
As mentioned in the Introduction, we know that (1.1) is global well-posedness

in H2. In order to prove the well-posedness with weight result, Theorem 3.7,
we initially proving the following

Lemma 3.4. Let T > 0, u0 ∈ H2, uλ0 → u0 in H2, and any s ∈ [0, 2) fixed.
Then, for each t ∈ [−T, T ], the family (uλ)(t), solutions of the approximated
problems (3.39), converges to u(t) in Hs, uniformly with respect to t, where
u(t) ∈ H2 is the global solution of the IVP (1.1).

Proof. 1. We begin proving that (uλ) is a Cauchy sequence in L2. Let µ := uλ,
v := uλ

′

and w = µ− v, we rely on the integral equation form

µ(t) =U(t)uλ0 −

∫ t

0

U(t− τ)F (µ)(τ)dτ, (3.40)

and

v(t) =U(t)uλ
′

0 −

∫ t

0

U(t− τ)F (v)(τ)dτ, (3.41)

where F (u) is given by (3.31). Thus (3.40) and (3.41) imply

w(t) =U(t)(uλ0 − uλ
′

0 )−

∫ t

0

U(t− τ)(F (µ) − F (v))(τ)dτ.
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Hence we have

‖w(t)‖L2
x
≤‖uλ0 − uλ

′

0 ‖L2 +

∥∥∥∥
∫ t

0

U(t− τ)(F (µ) − F (v))(τ)dτ

∥∥∥∥
L2

x

.

We can suppose a, b, c, d positive numbers, and using the definition of F (u)

‖

∫ t

0

U(t− τ)(F (µ) − F (v))(τ)dτ‖L2
x
≤ c

∫ t

0

∥∥|µ|2w + µvw + |v|2w
∥∥
L2

x
dτ

+ d

∫ t

0

‖µvxw + wvvx‖L2
x
dτ + e

∫ t

0

‖wµµx + wvµx‖L2
x
dτ

+ ‖

∫ t

0

U(t− τ)(d|µ|2wx + ev2wx)(τ)dτ‖L2
x

=: Ic + Id + Ie + Ide, (3.42)

with obvious notation. Applying the Hölder inequality, the Sobolev immersion
‖u(t)‖L∞

x
≤ C ‖u(t)‖H1/2+ and conservation law in Ḣ1, it follows that

Ic ≤c

∫ t

0

(‖µ‖L∞

x
+ ‖v‖L∞

x
)2‖w‖L2

x
dτ ≤ 2c

∫ t

0

(‖µ‖2H1 + ‖v‖2H1)‖w‖L2
x
dτ

≤Cc(‖uλ0‖
2
H1 + ‖uλ0‖

6
L2 + ‖uλ

′

0 ‖2H1 + ‖uλ
′

0 ‖6L2)

∫ t

0

‖w‖L2
x
dτ

≤2Cc(‖u0‖
2
H1 + ‖u0‖

6
L2)

∫ t

0

‖w‖L2
x
dτ.

Analogously, using Hölder inequality, the immersion ‖u(t)‖L∞

x
≤ C‖u(t)‖H1/2+

and conservation laws in Ḣ1 and Ḣ2, it follows that

Id ≤d

∫ t

0

(‖µ‖L∞

x
+ ‖v‖L∞

x
)‖vx‖L∞

x
‖w‖L2

x
dτ

≤d

∫ t

0

(‖µ‖H1 + ‖v‖H1)‖v‖H2‖w‖L2
x
dτ

≤Cd(‖uλ0‖H1 + ‖uλ0‖
3
L2 + ‖uλ

′

0 ‖H1 + ‖uλ
′

0 ‖3L2)Ω0

∫ t

0

‖w‖L2
x
dτ

≤2C d(‖u0‖H1 + ‖u0‖
3
L2)Ω0

∫ t

0

‖w‖L2
x
dτ,

where Ω0 = Ω0(‖u0‖L2 , ‖u0‖Ḣ1 , ‖u0‖Ḣ2 , T ). Similarly we obtain

Ie ≤C e(‖u0‖H1 + ‖u0‖
3
L2)Ω0

∫ t

0

‖w‖L2
x
dτ.
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Now, we estimate Ide. From (3.32), we have

Ide =‖

∫ t

0

U(t− τ)
(
d(|µ|2w)x − d(|µ|2)xw + e(v2w)x − 2evvxw

)
(τ)dτ‖L2

x

≤‖∂x

∫ t

0

U(t− τ)(d|µ|2w + ev2w)dτ‖L2
x
+

∫ t

0

‖d(|µ|2)xw − 2evvxw‖L2
x
dτ

≤C ‖d|µ|2w + ev2w‖L1
xL

2
t
+ c (d+ e)(‖u0‖H1 + ‖u0‖

3
L2)Ω0

∫ t

0

‖w‖L2
x
dτ

≤C |d|‖µ‖2L4
xL

∞

t
‖w‖L2

xL
2
t
+ c|e|‖v‖2L4

xL
∞

t
‖w‖L2

xL
2
t

+ C (d+ e)(‖u0‖H1 + ‖u0‖
3
L2)Ω0

∫ t

0

‖w‖L2
x
dτ

≤C (d+ e)
(
(‖µ‖2L4

xL
∞

t
+ ‖v‖2L4

xL
∞

t
)‖w‖L2

xL
2
t

+ (‖u0‖H1 + ‖u0‖
3
L2)Ω0

∫ t

0

‖w‖L2
x
dτ

)
.

Applying Proposition 3.3, we conclude

Ide ≤ C (d+ e)

(
Ω1‖w‖L2

xL
2
t
+ (‖u0‖H1 + ‖u0‖

3
L2)Ω0

∫ t

0

‖w‖L2
x
dτ

)
,

where Ω1 = Ω1(‖u0‖L2 , ‖u0‖Ḣ1 , ‖u0‖Ḣ2 , T ). Finally, we have

‖w(t)‖L2
x
≤ ‖uλ0 − uλ

′

0 ‖L2 + CΓ1

∫ t

0

‖w(τ)‖L2dτ + C(d + e)Ω1‖w‖L2
xL

2
t
,

(3.43)

where Γ1 = 2CcΓ2 + C(d+ e)ΓΩ0 and Γ = ‖u0‖H1 + ‖u0‖
3
L2. Moreover, since

∫ t

0

‖w(τ)‖L2dτ ≤ T 1/2‖w‖L2
xL

2
t
,

it follows from inequality (3.43) that

‖w(t)‖2L2
x
≤ C‖uλ0 − uλ

′

0 ‖2L2 + CΓ2
1T

∫ t

0

‖w(τ)‖2L2dτ + CΩ2
1

∫ t

0

‖w(τ)‖2L2dτ,

and using Gronwall’s inequality

‖w(t)‖2L2
x
≤ C‖uλ0 − uλ

′

0 ‖2L2eCt(Γ2
1T+Ω2

1).

Consequently, (uλ) is a Cauchy sequence in L2, and hence uλ → u ∈ L2.

2. Let s ∈ (0, 2), the interpolation in Sobolev spaces shows that

‖uλ − uλ
′

‖Hs ≤‖uλ − uλ
′

‖
1−s/2
L2 ‖uλ − uλ

′

‖
s/2
H2

≤‖uλ − uλ
′

‖
1−s/2
L2 Ω2,
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where Ω2 = Ω2(‖u0‖L2 , ‖u0‖Ḣ1 , ‖u0‖Ḣ2 , T ). Hence we have

uλ → u in Hs for all s ∈ [0, 2). (3.44)

Observe that the conservations laws in L2 and Ḣ1 for uλ implies that the limit
u also satisfies:

‖u(t)‖L2 = ‖u(0)‖L2 (3.45)

and
‖u(t)‖Ḣ1 ≤ ‖u(0)‖Ḣ1 + C‖u(0)‖3L2. (3.46)

Moreover, the conserved quantity (3.20) gives

‖uλxx(t)‖
2
L2 ≤

(
‖uλxx(0)‖

2
L2 + C4

)
(1 + T ) eC4T ,

where the positive constants C4 = C4(‖u
λ
0‖L2 , ‖uλ0x‖L2). Thus

‖uλxx(t)‖
2
L2 ≤ C

(
‖uxx(0)‖L2 , ‖ux(0)‖L2 , ‖u(0)‖L2, T ). (3.47)

Applying the Banach-Alaoglu Theorem, there exist a subsequence already de-
noted by uλ, and a function ũ ∈ H2, such that

uλ ⇀ ũ, in H2. (3.48)

Therefore, uλ ⇀ ũ in H1. On the other hand, by (3.44) we have uλ → u in
H1 and thus uλ ⇀ u in H1. Consequently, the uniqueness of the limit gives
u = ũ ∈ H2. The inequality (3.47) and the limit (3.48) implies

‖uxx(t)‖L2 =‖ũxx(t)‖L2 ≤ lim inf ‖uλxx(t)‖
2
L2

≤C
(
‖uxx(0)‖L2 , ‖ux(0)‖L2 , ‖u(0)‖L2, T ). (3.49)

3. Now we will prove that u is a solution of (1.1). Using Duhamel principle,
we will show that, for each t ∈ [−T, T ], u(t) = L(u)(t), where

L(u)(t) := U(t)u(0, x)−

∫ t

0

U(t− τ)F (u)(τ)dτ.

Let ̟ := L(uλ)− L(u), then

‖̟‖L2 ≤ ‖uλ(0, x)− u(0, x)‖L2 + ‖

∫ t

0

U(t− t′)(F (uλ)− F (u))(t′)dt′‖L2 .

(3.50)

In the same way as in (3.42), we get

‖

∫ t

0

U(t− τ)(F (uλ)− F (u))(τ)dτ‖L2
x
≤ c

∫ t

0

∥∥|u|2w + uvw + |v|2w
∥∥
L2

x
dτ

+ d

∫ t

0

∥∥uvxw + wvvx + |u|2wx

∥∥
L2

x
dτ + e

∫ t

0

∥∥wuux + wvux + v2wx

∥∥
L2

x
dτ

=: c Ic + dJd + eJe, (3.51)
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where v = uλ and w = uλ − u. We begin estimating

Ic ≤C(‖u‖L∞

t H1 + ‖v‖L∞

t H1 )2
∫ t

0

‖w‖L2
x
dτ

≤ (‖u(0)‖H1 + ‖uλ0‖H1 + ‖u(0)‖3L2 + ‖uλ0‖
3
L2)2

∫ t

0

‖w‖L2
x
dτ. (3.52)

Therefore, Ic → 0 as λ→ ∞. By (3.18)-(3.20) and (3.44)-(3.46)

Jd ≤C(‖u‖L∞

t H1 + ‖v‖L∞

t H1)‖v‖L∞

t H2

∫ t

0

‖w‖L2
x
dτ

+ ‖u‖2L∞

t H1

∫ t

0

‖wx‖L2
x
dτ. (3.53)

Hence Jd → 0 as λ→ ∞. Similarly by (3.49), we have

Je ≤C(‖u‖L∞

t H1 + ‖v‖L∞

t H1 )‖u‖L∞

t H2

∫ t

0

‖w‖L2
x
dτ

+ ‖v‖2L∞

t H1

∫ t

0

‖wx‖L2
x
dτ → 0. (3.54)

Then, combining (3.44) and (3.50)-(3.54) and passing to the limit as λ→ ∞

̟ = L(uλ)− L(u) = uλ − L(u) → 0 in L2.

The uniqueness of limit implies that u = L(u).

Remark 3.5. 1 Observe that the proof of Lemma 3.4 gives another way to
prove the global well-posedness of (1.1) in H2. For instance, in order to show
the persistence we proceed as follow:

We claim that u ∈ C([0, T ], Hs), for s ∈ [0, 2]. Indeed, let tn → t in [0, T ],
and using the Duhamel’s formula we have

‖u(tn)− u(t)‖H2 ≤‖U(tn)u0 − U(t)u0‖H2

+ ‖

∫ tn

0

U(tn − t′)F (u)(t′)dt′0 −

∫ t

0

U(t− t′)F (u)(t′)dt′‖H2

=: L1 + L2,

with the obvious notation. In L1, by the Dominated Convergence Theorem,
passing to the limit as n→ ∞,

L2
1 =

∫

R

(1 + ξ2)2|eitnφ(ξ) − eitφ(ξ)|2|û0(ξ)|
2dξ → 0,

where φ(ξ) = aξ2 + bξ3. In L2 also by Dominated Convergence Theorem, we
have

L2 ≤‖

∫ t

tn

U(tn − t′)F (u)(t′)dt′0‖H2 + ‖

∫ t

0

(U(tn)ψ(t
′)dt′ − U(t)ψ(t′)) dt′‖H2

≤‖

∫ t

tn

U(−t′)F (u)(t′)dt′0‖H2 + ‖

∫ t

0

(U(tn)ψ(t
′)dt′ − U(t)ψ(t′)) dt′‖H2 → 0,
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where ψ(t′) = U(−t′)F (u)(t′) and this proves that u ∈ C([0, T ], H2).

2 In Lemma 3.4 we can consider uλ0 (x) := F
−1

(
χ{|ξ|≤λ}û0(ξ)

)
(x)

(
or

uλ0 (x) = F
−1 (ψλ(ξ)û0(ξ)) (x) where ψλ is a continuous function with support in

[−2λ, 2λ] and such that ψλ = 1 in [−λ, λ]
)
. Therefore, if u0 ∈ Hs then

∫
|ûλ0 − û0|

2(ξ)dµθ =

∫
|χ{|ξ|>λ}û0|

2(ξ)dµθ =

∫

|ξ|>λ

|û0|
2(ξ)dξdµθ → 0,

when λ→ ∞. In this case, Paley-Wiener Theorem implies that the initial data
uλ0 in (3.39) has an analytic continuation to an entire analytic (in x) function.
On the other hand, by [14] the solution uλ of the IVP (3.39) also is an entire
analytic function. Hence we have the following :

Corollary 3.6. If u0 ∈ H2 and u(t) is the global solution of the IVP (3.39)
associated with the initial data u0, then there exists a sequence of entire analytic
functions uλ such that uλ(t) → u(t) in Hs, with s ∈ [0, 2).

3 If u0 ∈ L2(dµ̇θ), θ ∈ [0, 1], λ > 0 and uλ0 (x) = F
−1

(
χ{|ξ|<λ}û0

)
(x), then

‖uλ0‖L2(dµ̇θ) ≤ ‖u0‖L2(dµ̇θ). (3.55)

In fact, if θ = 0, (3.55) is a direct consequence of Plancherel’s theorem and
definition of uλ0 . If θ = 1, using properties of Fourier transform we obtain

|x̂uλ0 (ξ)| = |∂ξûλ0 (ξ)| = |χ{|ξ|<λ}∂ξû0(ξ)| = χ{|ξ|<λ}|x̂u0(ξ)|.

Thus by Plancherel’s equality

∫

R

x2|uλ0 (x)|
2dx =

∫

R

|x̂uλ0 (ξ)|
2dξ ≤

∫

R

|x̂u0(ξ)|
2dξ =

∫

R

|xu0(x)|
2dx.

When θ ∈ (0, 1), we obtain (3.55) by interpolation between the cases θ = 0 and
θ = 1, see [2].

3.4 Main result

Now, we state our main theorem of global existence:

Theorem 3.7. The IVP (1.1) is globally well-posed in X
2,θ for any 0 ≤ θ ≤ 1

fixed. Moreover, the solution u of (1.1) satisfies, for each t ∈ [−T, T ]

‖u(t)‖2L2(dµ̇θ)
≤ C

(
‖u0‖

2
L2 + ‖u0‖

2
L2(dµ̇θ)

+ 1
)
,

where C = C(θ, ‖u(t)‖Hs , ‖u(0)‖L2, ‖ux(0)‖L2 , ‖uxx(0)‖L2 , T ), s > 1/2.

20



Proof. Let T > 0 and u0 ∈ X
2,θ, u0 6= 0, θ ∈ [0, 1], we know that that there

exists an function u ∈ C([−T, T ], H2) such that the IVP (1.1) is global well-
posed in H2. Is well know that S(R) is dense in X

s,θ. Then for u0 ∈ X
2,θ there

exist a sequence (uλ0 ) in S(R) such that

uλ0 → u0 in X
2,θ. (3.56)

By (3.56) and Lemma 3.4 the sequence of solutions uλ(t) associated to IVP
(3.39) and with initial data uλ0 satisfy

sup
t∈[−T,T ]

‖uλ(t)− u(t)‖Hs
λ→∞
→ 0 s ∈ [0, 2). (3.57)

Suppose temporarily that the solutions uλ of the IVP (3.39) satisfy the condi-
tions (i)-(iv) of Section 2. Therefore Lemma 2.2 gives

∫

R

|ξ|2θ|uλ(t, ξ)|2 dξ ≤ C
( ∫

R

|uλ(0, ξ)|2 dξ +

∫

R

|ξ|2θ|uλ(0, ξ)|2 dξ + 1
)
,

where C = C(θ, ‖uλ(t)‖Hs , ‖uλ(0)‖L2 , ‖uλx(0)‖L2 , ‖uλxx(0)‖L2 , T ), s ∈ (1/2, 2),
taking the limit when λ→ ∞, (3.57) implies

∫

R

|ξ|2θ|u(t, ξ)|2 dξ ≤ C
( ∫

R

|u(0, ξ)|2 dξ +

∫

R

|ξ|2θ|u(0, ξ)|2 dξ + 1
)
,

where C = C(θ, ‖u(t)‖Hs , ‖u(0)‖L2, ‖ux(0)‖L2 , ‖uxx(0)‖L2, T ). Thus u(t) ∈
X

2,θ, θ ∈ [0, 1], t ∈ [−T, T ], which proves the persistence. The global well-
posedness theory in H2 implies the uniqueness and continuous dependence upon
the initial data in H2, therefore is sufficient prove continuous dependence in the
norm ‖·‖L2(dµ̇θ). Let u(t) and v(t) be two solutions in X

2,θ, θ ∈ [0, 1] of the IVP

(1.1) with initial dates u0 and v0 respectively, let uλ(t), vλ(t) be the solutions of
the IVP (3.39) with initial dates uλ0 and vλ0 respectively such that uλ0 , v

λ
0 ∈ S(R),

uλ0 → u0, v
λ
0 → v0 in X

2,θ and with λ >> 1, we have

‖u(t)− v(t)‖L2(dµ̇θ) ≤‖u(t)− uλ(t)‖L2(dµ̇θ) + ‖uλ(t)− vλ(t)‖L2(dµ̇θ)

+ ‖vλ(t)− v(t)‖L2(dµ̇θ).

Convergence in (3.57) implies for λ >> 1 that

|u(x, t)− uλ(x, t)| ≤ 2|u(x, t)| and |v(x, t) − vλ(x, t)| ≤ 2|v(x, t)|,

and the Dominated Convergence Lebesgue’s Theorem gives

‖u(t)− uλ(t)‖L2(dµ̇θ) → 0 and ‖vλ(t)− v(t)‖L2(dµ̇θ) → 0.

Let wλ := uλ − vλ, then wλ satisfies the equation

wλ
t + iawλ

xx + bwλ
xxx + c(|uλ|2wλ + uλvλw̄λ + |v|2wλ)

+ d(uλvλx w̄
λ + wλv̄λvλx + |uλ|2wλ

x) + e(wλuλūλx + wλvλūλx + (vλ)2w̄λ
x) = 0.
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Then, we multiply the above equation by w̄λ, integrate on R and take two times
the real part, to obtain

∂t

∫

R

|wλ(t, x)|2 dx ≤ h(‖u0‖H2 , ‖v0‖H2)

∫

R

|wλ(t, x)|2 dx,

where we have used convergence (3.57), Lema 3.1 and h is a polynomial function
with h(0, 0) = 0. Therefore, by Gronwall’s Lema, we have

‖wλ(t)‖L2 ≤ exp
(
T h(‖u0‖H2 , ‖v0‖H2)

)
‖wλ

0 ‖L2 ,

which gives the continuous dependence in case θ = 0.
Now, when θ = 1 a similar argument as used in the proof of Proposition 3.2

gives

‖wλ(t)‖L2(dµ̇) ≤ exp
(
T h1(‖u0‖H2 , ‖v0‖H2)

) (
‖wλ

0 ‖L2(dµ̇)+h1(‖u0‖H2 , ‖v0‖H2)
)
,

where h1 is a continuous function with h1(0, 0) = 0.
Consequently, applying the Abstract Interpolation Lemma, we obtain the

continuous dependence for θ ∈ (0, 1), where we have assumed temporarily that
the family (wλ) satisfies the hypothesis of the Abstract Interpolation Lemma.

Finally we prove that the sequence of solutions (uλn(t)) satisfy the conditions
(i)-(iv). Similarly, we could obtain for the sequence (wλn(t)).

Condition (i): There exists N0 such that ∀λ ≥ N0 and for all t ∈ [−T, T ],

L
1({x ∈ R;uλ(t, x) 6= 0}) > 0.

In fact, by contradiction we suppose that there exist sequences λn → ∞ and
t0 ∈ [−T, T ] such that, uλn(t0, x) = 0 almost everywhere. By convergence (3.57)
we conclude that u(t0) = 0, the uniqueness of the solution implies u = 0, in
particular u0 = 0, which is a contradiction.

In the following, we consider A = (uλ)λ>N0
, see Section 2.

Condition (ii): Inequality (2.9) is a consequence of the conservation law in
L2 and (2.10) is a consequence of the Proposition 3.2.

Condition (iii): We prove (2.11) by contradiction. If there exists a θ̃ ∈ [0, 1],
such that for all Θ > 0, there exist λn > N0, t0 ∈ [−T, T ], γ0 ∈ (0, 1), such that

∫

{|uλn(t0)|2<Θ}

|uλn(t0)|
2 dµ̇θ̃ > γ0

∫

R

|uλn(t0)|
2 dµ̇θ̃.

Then, taking the limit as Θ → 0+ in the above inequality, we arrive to contra-
diction.

Condition (iv): We prove (2.12) also by contradiction. If for all R > 0 and
each γ2 ∈ (0, 1), there exists λn > N0, such that

∫

{|ξ|≥R}

|uλn(0)|2 dµ̇ > γ2

∫

R

|uλn(0)|2 dµ̇, γ2 ∈ (0, 1),

similarly passing to the limit as R→ +∞, carry to a contradiction, which proves
the condition (iv).
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