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Abstract

Tauberian Theorems of exponential type provided by Kohlbecker, de Bruijn, and Kasa-

hara are proved in only one Tauberian theorem. To this aim, the structure of those classical

tauberian theorems is identified and, using a relationship recently proved by Cadena and

Kratz, the relationships among its components are given.
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1 Motivation and main results

The Tauberian theorems of exponential type given by Kohlbecker, de Bruijn, and Kasahara

appeared in 1958, 1959, and 1978, respectively. They concern equivalences between the log-

arithm of functions and the logarithm of their Laplace transforms when these two logarithms

behave as regularly varying functions. These theorems are closely related among them and

hence their proofs may follow a same structure (see for instance §4.12 of [1]). Nevertheless

these relationships, these three theorems are often presented independently. For a survey on

these theorems see for instance [1].

We aim to unify these theorems in an only one. This new presentation gives a general view

of these classical results. As noticed by Bingham et al., a result of this kind was already given

by de Bruijn in [3]. However, our proof is different from that given by this author because the

structure of these tauberian theorems is revealed and the interplay among its components is

showed.

The Tauberian theorems of exponential type involve regularly varying (RV) functions. A mea-

surable function U : R+ → R
+ is RV with index α ∈ R if, for t > 0, U (xt) ∼ U (x)tα (x → ∞),

where f (x) ∼ g (x) (x → x0) means f (x)
/

g (x) → 1 as x → x0. The class of RV functions of index

α is denoted by RVα. If α= 0, then U is slowly varying (SV).

It follows our main result. We denote by log(x) the natural logarithm of x.

Theorem 1. Let a,b ∈R such that ab(b−1) < 0. Let c ∈R such that abc < 0. Let d = a(1−b)
(

−

ab
/

c
)b/(b−1)

. Assume that P (u) is a real function, that

∫r

0
P (u)du exists in the Lebesgue sense

for every positive r , and that

∫∞

0
P (u)du converges if b < 0. Put f (s) = A +

∫∞

0
P (us)ecudu for

some real A ∈R such that A = 0 if d < 0. Then

log(P (x)) ∼ axb xβ
→∞ (1)
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iff

log( f (λ)) ∼ dλb/(1−b) (λ→∞). (2)

The proof of Theorem 1 is given in Section 2. A relationship provided by Cadena and Kratz [2]

is used to prove this result. For the sake of completeness of this note, we give this relationship

as Proposition CK and indicate its proof in appendix. Part of this proof is copied from [2]. Our

main result is discussed in the last section.

Note that in Theorem 1 we use simple forms of RV functions. They are φ ∈ RVα such that

φ(x) = xα as x →∞. In what follows we use this kind of functions only. Hence, SV functions

are assumed L(x) = 1 as x →∞.

It follows the application of our theorem to prove the Tauberian theorems given by Kohlbecker,

de Bruijn, and Kasahara.

Corollary 1 (Kohlbecker’s Tauberian Theorem [5], version given by Bingham et al. [1]). Let µ

be a measure on R, supported by [0;∞) and finite on compact sets. Let

M(λ) =

∫

[0;∞)
e−x/λdµ(x) (λ> 0).

Let α> 1, B > 0. Then

log(µ[0; x]) ∼ B x1/α (x →∞)

iff

log(M(λ)) ∼ (α−1)(B/α)α/(α−1)λ1/(α−1) (λ→∞).

Proof. By integration by parts M(λ) may be rewritten as, using the change of variable y = x
/

λ,

M(λ) =

∫∞

0
e−yµ

[

0; yλ
]

d y . Taking a = B , b = α, and c = −1, gives d = (α− 1)(B/α)α/(α−1)

(> 0), and putting P (x) = µ[0; x] and f = M with A = 0, applying Theorem 1, the corollary then

follows.

As mentioned above, de Bruijn’s Tauberian Theorem tackled all of three tauberian theorems

of exponential type reviewed in this note. In order to distinguish the case not concerned in

the results of Kohlbecker and Kasahara, in what follows we call this case de Bruijn’s Tauberian

Theorem, as often found in the literature (see for instance [1], [6], and [7]).

Corollary 2 (de Bruijn’s Tauberian Theorem ([3])). Let A > 0. Assume that P (u) is a real func-

tion and that M(λ) = λ

∫∞

0
P (x)e−λAx d x converges for all λ> 0. If β< 0, then for B < 0,

log
(

P
(

1
/

x
))

∼ B x−β (x →∞)

iff

log(M(λ)) ∼ B(1−β)

(

λ

Bβ

)β/(β−1)

(λ→∞).

Proof. Using the changes of variables y = λx and s = 1
/

λ, M
(

1
/

s
)

=

∫

∞

0
e−y P (sy)d y . Taking

a = B , b = β, and c =−A, gives d = B
(

1−β
)(

A
/

(Bβ)
)β/(β−1)

(< 0), and taking f as f (1
/

λ) with

A = 0, applying Theorem 1, the corollary then follows.
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Remark 1. The version of de Bruijn’s Tauberian Theorem given by Bingham et al. in [1], page

254, considers the Laplace transform of a measure P (x) =µ
(

0; x
]

on (0;∞), i.e., for λ> 0,

M(λ) =

∫∞

0
e−λx dµ(x).

Then, applying integration by parts one gets, using the changes of variables y = λx and s = 1
/

λ,

M
(

1
/

s
)

=

∫

∞

0
e−yµ

(

0; sy
]

d y −µ
(

0;0+
]

,

where

µ
(

0;0+
]

= lim
x→0+

µ
(

0; x
]

.

Then, in the case of Corollary 2, one necessarily has 0 < µ
(

0;0+
]

< ∞, and this implies that A

given in Theorem 1 is negative, and then necessarily d > 0. However, from the proof of Corollary

2, d < 0 is deduced. One can check, following the proof of Theorem 1, that if A 6= 0 and d < 0,

then de Bruijn’s Tauberian Theorem cannot be obtained.

Corollary 3 (Kasahara’s Tauberian Theorem [4], version given by Bingham et al. [1]). Suppose

µ be a measure on (0;∞) such that M(λ) =

∫∞

0
eλx dµ(x) <∞ for all λ> 0. Let 0 <α< 1. Then,

for B > 0,

logµ
(

x;∞
)

∼−B x1/α (< 0) (x →∞)

iff

log(M(λ)) ∼ (1−α)(α/B)α/(1−α)λ1/(1−α) (λ→∞).

Proof. Noting that µ(0;∞) <∞, by integration by parts M(λ) may be rewritten as, using the

change of variable y = λx, M(λ) = µ(0;∞)+

∫

∞

0
exµ

(

x
/

λ;∞
)

d x. Taking a =−B , b = 1
/

α, and

c = 1, gives d =−B
(

1−1
/

α
)

(B/α)1/(α−1) =
(

1−α
)

(B/α)α/(α−1), and putting P (x) = µ
(

x;∞
)

and

f = M with A =µ(0;∞), applying Theorem 1, the corollary then follows.

2 Proof of Theorem 1

We will use the next result proved by Cadena and Kratz [2]. It is based on the class M intro-

duced by these authors which consists in measurable functions U : R+ → R
+ satisfying the

property that

∃ρ ∈R, ∀ǫ> 0, lim
x→∞

U (x)

xρ+ǫ
= 0 and lim

x→∞

U (x)

xρ−ǫ
=∞. (3)

One can prove that ρ in (3) is unique. Hence, it is denoted by ρU .

Proposition CK. Let U : R+ → R
+ be a measurable function. Then, U ∈ M with ρU = η iff

log (U (x)) ∼ η log(x) (x →∞).

The proof of Proposition CK is given in appendix. The proof of Theorem 1 follows.

Let 0 < ǫ<
∣

∣d
∣

∣

/

2. Note that d > 0 if b > 0, and d < 0 if b < 0.

Proof of the necessary condition. Define the function h(x) = axb + cx − d , x > 0. h is con-

tinuously differentiable, concave (h′′(x) = ab(b − 1)xb−2 < 0), and, reaches its maximum at

xM =
(

− c
/

(ab)
)1/(b−1)

(> 0) and h(xM ) = 0, so in particular h ≤ 0. Hence, there exists 0 < η <

min(xM ,1) such that, for x ∈
[

xM −η; xM +η
]

, h(x) ≥−ǫ
/

3.
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Let 0 < τ< 1 be sufficiently small, to be defined later.

Since the function P satisfies (1) there exists x0 > 0 such that, for xβ ≥ x
β
0 ,

∣

∣

∣

∣

log(P (x))

axb
−1

∣

∣

∣

∣

≤ τ. (4)

Write, for ξ> 1 and ω ∈
{

ǫ,−ǫ
}

, using the changes of variable v = u
/

log(ξ) and ψ= log(ξ),

f
(

(logξ)(1−b)/b
)

ξd+ω
= Ae−(d+ω)ψ

+ψe−ωψ
∫∞

0
P

(

vψ1/b
)

e(cv−d)ψd v . (5)

If ω=−ǫ and ψ≥
(

x0

/

(xM −η)
)b

, then, denoting ζ=−sgn(a)τ and θ = sgn(b)η, provides

e−ωψ
∫∞

0
P

(

vψ1/b
)

e(cv−d)ψd v ≥ eǫψ
∫xM+η

xM−η
e

(

h(v)+ζavb
)

ψd v ≥ 2ηe
2
3 ǫψeζa(xM +θ)bψ.

Combining this and (5) give, choosing τ< ǫ
/(

3a(xM +θ)b
)

and noting that ψ→∞ as ξ→∞,

lim
ξ→∞

f
(

(logξ)(1−b)/b
)

ξd+ω
≥ lim

ψ→∞

(

Ae−(d+ω)ψ
+2ηψe

2
3 ǫψeζa(xM +θ)bψ

)

= ∞.

Next, take ω= ǫ. Then, using the changes of variables introduced above,

∫∞

0
P

(

vψ1/b
)

ecvψd v =

∫x0ψ
−1/b

0
P

(

vψ1/b
)

ecvψd v +

∫∞

x0ψ−1/b
P

(

vψ1/b
)

ecvψd v = I1(ψ)+ I2(ψ).

On I1, using the change of variable y = vψ1/b , if c < 0, then by hypothesis

I1(ψ) =ψ−1/b

∫x0

0
P (y)ec yψ1−1/b

d y ≤ψ−1/b

∫x0

0
P (y)d y ,

and, if c > 0, then necessarily a > 0 and b > 1, and thus

I1(ψ) =ψ−1/b

∫x0

0
P (y)ec yψ1−1/b

d y ≤ψ−1/becx0ψ
θ
∫x0

0
P (y)d y ,

for some 0 < θ < 1. So, we get, taking ψ> (|c|x0)1/(1−θ),

lim
ψ→∞

ψe−(ǫ+d)ψI1(ψ) ≤ lim
ψ→∞

ψ1−1/be−(ǫ+d−cx0ψ
θ−1)ψ

∫x0

0
P (y)d y = 0.

On I2, if b < 0, c < 0 and one has

I2(ψ) =ψ−1/b

∫∞

x0

P (y)ec yψ−1/bψd y =ψ−1/b

∫∞

x0

P (y)ec yψ1−1/b

d y ,

which implies that, since ec yψ1−1/b
is decreasing in y ,

lim
ψ→∞

ψe−(ǫ+d)ψI2(ψ) ≤ lim
ψ→∞

ψ1−1/be−(ǫ+d)ψ+cx0ψ
1−1/b

∫∞

x0

P (y)d y = 0.

If b > 0, denote ζ as above. Then, using (4),

e−dψI2(ψ) ≤

∫∞

x0ψ−1/b
e((1−ζ)avb+cv−d)ψd v .
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Let g (x) = (1−ζ)axb +cx−d , x ≥ 0, and take ζ< sgn(1−b)

(

[

ǫ

2

(

−
c

ab

)1/(1−b)
+1

]1−b

−1

)

. Then,

g is differentiable, concave (g ′′(x) = (1−ζ)ab(b−1)xb−2 < 0), and reaches its maximum at xg =
(

−c
/

(ab(1−ζ))
)1/(b−1)

, and g (xg ) =
(

−c
/

(ab)
)1/(b−1)[

(1−ζ)−1/(b−1)
−1

]

(< ǫ
/

2). Hence, g−ǫ
/

2 <

0. This inequality and the integrability of eg (x)−ǫ/2 on (0;∞) allow again the application of the

reverse Fatou lemma giving

lim
ψ→∞

∫∞

0
e(g (v)−ǫ/2)ψd v ≤ lim

ψ→∞

∫∞

0
e(g (v)−ǫ/2)ψd v ≤

∫∞

0
lim
ψ→∞

e(g (v)−ǫ/2)ψd v = 0.

Hence, one has

lim
ψ→∞

ψe−(ǫ+d)ψI2(ψ) ≤ lim
ψ→∞

ψe−
1
2 ǫψ

∫∞

0
e(g (v)−ǫ/2)ψd v = 0.

Combining the results on I1 and I2 and (5) give

lim
ξ→∞

f
(

(logξ)(1−b)/b
)

ξd−ω
= lim

ψ→∞

(

Ae−(d+ω)ψ
+ψe−(ω+d)ψI1(ψ)+ψe−(ω+d)ψI2(ψ)

)

≤ 0.

Therefore, f being positive and measurable, U (ξ) = f
(

(logξ)(1−b)/b
)

∈ M with ρU = d , and

then, applying Proposition CK,

lim
ξ→∞

log
(

f
(

(logξ)(1−b)/b
))

log(ξ)
= d .

By using the change of variable λ= (logξ)(1−b)/b the assertion follows.

Proof of the sufficient condition. Let ǫ> 0. Suppose that the function f satisfies (2). Rewriting

this limit as, using the change of variable ξ= exp
{

λb/(1−b)
}

,

lim
ξ→∞

log
(

f
(

(logξ)(1−b)/b
))

log(ξ)
= d ,

this means that, applying Proposition CK, U ∈M with ρU = d where U is defined as above. So,

one has

lim
ξ→∞

f
(

(logξ)(1−b)/b
)

ξd+ǫ
= 0 and lim

ξ→∞

f
(

(logξ)(1−b)/b
)

ξd−ǫ
=∞,

i.e., using the changes of variable v = u
/

log(ξ) and ψ= log(ξ) and denoting Q(x)= log(P (x)),

lim
ψ→∞

d

∫∞

0
e(Q(vψ1/b )/ψ+cv−d−ǫ)ψd v = 0 and lim

ψ→∞
ψ

∫∞

0
e(Q(vψ1/b )/ψ+cv−d+ǫ)ψd v =∞. (6)

We claim that, given ψ> 0,

Q(vψ1/b)
/

ψ+cv −d ≤ 0 almost surely (a.s.) for all v > 0. (7)

Assuming there exist ν> 0 and v1 > 0 such that Q(v1d1/b)
/

d +cv1 −d ≥ ν a.s., this means that

there exists η > 0 such that, for v ∈
[

v1 −η; v1 +η
]

, Q(vd1/b)
/

d + cv −d ≥ ν. Hence, taking

ǫ= ν
/

2, one gets

lim
ψ→∞

ψ

∫

∞

0
e(Q(vψ1/b )/ψ+cv−d−ǫ)ψd v ≥ lim

ψ→∞
ψ

∫v1+η

v1−η
eνψ/4d v = lim

ψ→∞
2ηψeνψ/4

=∞,

which contradicts the first limit in (6).
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Furthermore, we claim that, given ψ> 0,

there exists v0 > 0 such that Q(v0ψ
1/b)

/

ψ+cv0 −d = 0. (8)

Assuming for all v > 0 that Q(vψ1/b)
/

ψ+cv−d < 0, since (7) is satisfied, then, using the change

of variable z = vψ1/b , gives

Q(z)<
d −cv

vb
zb .

Now, taking the following limits on v provides, for any z > 0,

Q(z)≤















































lim
v→0+

d −cv

vb
zb

=−∞ if b < 0, because d ,c < 0

lim
v→0+

d −cv

vb
zb

= 0 if 0 < b < 1

lim
v→∞

d −cv

vb
zb

= 0 if b > 1.

This implies that P ≡ 0 if b < 0 and P ≡ 1 if b > 0, which contradicts the hypothesis (1).

Introducing the change of variable z = v0ψ
1/b in the relationship given in (8) gives, for z > 0,

Q(z)=
d −cv0

vb
0

zb .

This implies that Q is continuously differentiable, concave, and then that Q(vψ1/b)
/

ψ+ cv −

d = 0 has a unique maximum at v , i.e. v0. This maximum satisfies

ψ1/b Q ′(v0ψ
1/b)

ψ
+c =ψ1/b−1 d −cv0

vb
0

b
(

v0ψ
1/b

)b−1
+c = 0,

which implies b(d − cv0) = −cv0, i.e. v0 = db
/

(c(b −1)). v0 is positive and satisfies v0 = xM .

Straightforward computations gives a =
(

d − cv0

)/

vb
0 , so Q can be rewritten as Q(z) = azb .

Hence (1) follows.

3 Discussion of results

Our proof of the tauberian theorems given by Kohlbecker, de Bruijn, and Kasahara disects the

functioning of these theorems. A function like h(x) = axb + cx −d , x > 0, is identified, which

has two key properties in order to establish these theorems: concavity and non-positivity.

The first of these properties gives the possible tauberian theorems: ab(b −1) < 0, from which

exactly three solutions are possible, each one corresponding to a known tauberian theorem

of exponential type. The second property guarantees the convergence of integrals of type
∫∞

0
P (us)ecudu and lets the control of this integral at v0 > 0. This point satisfies h(v0) = 0, the

unique maximum of h. Note that if h(v0) > 0 or h(v0) < 0 one cannot obtain those tauberian

theorems. From the relationship h′(v0) = 0 the condition for c is derived, and from h(v0) = 0

the corresponding condition for d . Finally, Proposition CK allows the identification of the dis-

position of the logarithms of functions.
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A Proof of Proposition CK

Let U : R+ →R
+ be a measurable function.

Proof of the necessary condition. Let ǫ> 0 and U ∈M with ρU = τ. One has, by definition, that

lim
x→∞

U (x)

xρ+ǫ
= 0 and lim

x→∞

U (x)

xρ−ǫ
=∞.

Hence, there exists x0 ≥ 1 such that, for x ≥ x0,

U (x) ≤ ǫxτ+ǫ and U (x) ≥
1

ǫ
xτ−ǫ.

Applying the logarithm function to these inequalities and dividing them by log(x) (with x > 1)

provide
log(U (x))

log(x)
≤

log(ǫ)

log(x)
+τ+ǫ and

log (U (x))

log(x)
≥−

log(ǫ)

log(x)
+τ−ǫ,

and, one then has

lim
x→∞

log(U (x))

log(x)
≤ τ+ǫ and lim

x→∞

log(U (x))

log(x)
≥ τ−ǫ,

from which one gets, taking ǫ arbitrary,

τ≤ lim
x→∞

log(U (x))

log(x)
≤ lim

x→∞

log(U (x))

log(x)
≤ τ,

and the assertion follows.
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Proof of the sufficient condition. Let ǫ> 0. By hypothesis, there exists x0 > 1 such that, for x ≥

x0,
∣

∣ log(U (x))
/

log(x)−τ
∣

∣≤ ǫ
/

2.

Writing, for w ∈
{

ǫ,−ǫ
}

,

U (x)

xτ+w
= exp

{

log(x)×

(

log(U (x))

log(x)
−τ−w

)}

gives

exp
{

log(x)×
(

−
ǫ

2
−w

)}

≤
U (x)

xτ+w
≤ exp

{

log(x)×
( ǫ

2
−w

)}

,

and then,

lim
x→∞

U (x)

xτ+ǫ
≤ lim

x→∞
exp

{

log(x)×
( ǫ

2
−ǫ

)}

= 0

and

lim
x→∞

U (x)

xτ−ǫ
≥ lim

x→∞
exp

{

log(x)×
( ǫ

2
+ǫ

)}

=∞.

These two limits provide U ∈M with ρU = τ.
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