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ABSTRACT. Using the theory developed by Kenig, Ponce, and Vega, we prove
that the Hirota-Satsuma system is locally well-posed in Sobolev spaces H*® (R) X
H*(R) for 3/4 < s < 1. We introduce some Bourgain-type spaces X;’yb for
a # 0, s,b € R to obtain local well-posedness for the Gear-Grimshaw system in
H?*(R) x H*(R) for s > —3/4, by establishing new mixed-bilinear estimates in-
volving the two Bourgain-type spaces X;:’ and X;?+ adapted to O¢ + a,83
and 9 + a4 03 respectively, where || = |a—| # 0.
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1. INTRODUCTION

In this paper we are concerned with two systems of coupled KdV equations,
namely the Hirota-Satsuma system and the Gear-Grimshaw system.
First we consider local well-posedness (LWP) and ill-posedness of the initial
value problem (IVP) for the following system:
U — a(Ugge + Buuy) = 2bvv,,
Vi + Vgzz + 3uvy =0, (1.1)
u(0) = ug, v(0) = vo,
known as the Hirota-Satsuma system which was introduced in [10] to describe the
interaction of two long waves with different dispersion relations. Here a,b are real
constants, and u, v are real-valued functions of the two real variables x and ¢. System
([T is a set of coupled Korteweg-de Vries (abbreviated KdV henceforth) equations,
and it is a generalization of the KdV equation (which is obtained when v = 0). The

Cauchy problem associated to (1), for the real and periodic case, was previously
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studied by P. F. He [9], for b > 0, —1 < a < 0, and considering Sobolev indices

s > 3. Tt deserves remark that system (LI has the following conserved quantities:

+oo

V(u,v) = / (1 ; aui + b2 — (14 a)u® — buv2)d:1:, (1.2)
+oo

F(u,v) = / (u® + ;bv2)dx. (1.3)

Later, Feng [6] considered the initial value problem for the following system:

up — a(Uggr + 6uLy) = 200V,
Vi + Vgzz + CUVL + dvvg, = 0, (1.4)
u(0) = ug, v(0) = vo,

which reduces to the Hirota-Satsuma system when ¢ = 3 and d = 0, always assuming
that a # 0. LWP of the IVP associated to system (4] was obtained, for initial data
(uo,v0) € H?(R) x H*(R) for s > 1, with a + 1 # 0 and bc > 0. Moreover, global
well-posedness (GWP) for system (4] was also proved (see [0]) in H*(R) x H*(R)
for s >1,if —1 <a <0 and bc > 0.
The second problem we will consider here is related to the local well-posedness

of the IVP for the Gear-Grimshaw system given by

Ut + Uszee + A3Vzee + Uty + A10V; + az(uv)s = 0,

D10t + Vazr + b203ULee + VU, + boaguuy + baar (uv), + rv, =0, (1.5)

u(0) = ug, v(0) = vo,
where a1, az2,a3 € R, 7 € R, and b1,bs > 0; u = u(x,t), v = v(z,t) are real-valued
functions of the two real variables z and t. System ([H) was derived in [7] (see
also [3] for a very good explanation about the physical context in which this system
arises) as a model to describe the strong interaction of two-dimensional, weakly
nonlinear, long, internal gravity waves propagating on neighboring pycnoclines in
a stratified fluid, where the two waves correspond to different modes. Bona et
al. [3] proved GWP of the IVP associated to (LE) with initial data belonging to
H*(R) x H*(R) for s > 1, assuming r = 0 and |as| < 1/v/be. Later, Ash et al.
[1] considered GWP of (LH) in L?(R) x L?(R) supposing r = 0 and |ag| # 1/v/b2
(see Section BI}F(2)). Further, Saut and Tzvetkov [I7] considered GWP of system
(1) for initial data (ug,vo) € L*(R) x L*(R), assuming that r # 0 and that the
matrix (aj); jef1,2) has real distinct eigenvalues (see Section B.IF(1)). Recently,
Linares and Panthee [15], by using the bilinear estimate of Kenig, Ponce, and Vega
[13], showed LWP for system (B.5) with initial data (ug,vo) € H*(R) x H*(R) for
s > —3/4 (see Section BI}(2), and Remark [3T}i.)). Solutions of (ILH]) satisfy the
following conservation laws:

+oo +oo +oo
Dy (u) :/ udz, Po(v) :/ vdz, ®3(u,v) :/ (bau® + byv?)dx,

—o0 —o0 —o0
+oo u3 1)3
Dy(u,v) = / (bgui + vi + 2boaz vy — bQ? — byasuv — boaquv? — 3 Tv2) dx.

— 00
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We say that the IVP

w(0) = o
is locally well-posed in X (Banach space) if there exist T = T'(||do||x) > 0 and a

unique solution #(t) of the corresponding IVP such that
i)y ueC(-T,.7T; X)NYr = Xp;
ii.) the mapping data-solution @y — (t), from {vh € X;||0|x < M} into X is

uniformly continuous for all M > 0; i.e.
VM > 0,Ve > 0,36 =0(e, M) > 0, ||ty — Uo||x < then ||d— 7| x, <e,
where ||dgllx < M and ||%||lx < M.

We say that the IVP is globally well-posed in X if the same properties hold for all
time T" > 0. If some hypothesis in the definition of local well-posedness fails, we
say that the IVP is ill-posed.

This paper is organized as follows. In Section 2 we use Banach’s fixed-point
theorem in a suitable function space and the theory obtained by Kenig, Ponce,
and Vega, to prove LWP to system (LII), for any a,b € R, with initial data in
H?*(R) x H*(R) for 3/4 < s < 1. We also show that system ([T with a # 0 is ill-
posed in H*(R)x H*' (R) for s € [—1, —3),and s’ € R. We begin Section 3 with a few
comments to scale changes carried out previously concerning the Gear-Grimshaw
system. Thus, we introduce some Bourgain-type spaces X¢; for a # 0, and s,b € R.
Moreover, we prove some new mixed-bilinear estimates involving the two Bourgain-
type spaces X Sl)b and X;bl corresponding to 9; — 92 and 9; + 92 respectively, to
obtain LWP for the Gear-Grimshaw system @B.I) with » = 0, a;2 = a2; = 0,
a11 = —agy # 0, and initial data in H*(R) x H*(R) for s > —3/4 (see Theorem
below). We remark that these mixed-bilinear estimates (see Proposition B.2])
presented here are not an immediate consequence of the estimates proved by Kenig,
Ponce, and Vega in [13] (see Remark and Remark B.4Hi.)). Finally, we notice
that system (L)) is treated separately from system (L0 because the nonlinearity
in (L) has the non-divergence form, while the one in (I5]) has the divergence form;
a possible difficulty with regard to the LWP of (I.I) in lower Sobolev indices could
be related to the obtention of a suitable bilinear estimate for the nonlinear term in
the second equation of (I]).

Notation:

° f = Ff : the Fourier transform of f (F~! : the inverse of the Fourier transform),
where f(¢) = \/% [e %2 f(x)dx for f € L'(R).

o || - |lsy (-;-)s: the norm and the inner product respectively in H*(R) (Sobolev
space of order s of L? type), s € R. || f]|2 = [(1+ [€]?)®|f(€)[de.
-1l =1 "llo: the L?>(R) norm. (-,-) denotes the inner product on L?(R).
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e B(X,Y): set of bounded linear operators on X to Y. If X =Y we write B(X).
|l - Iz(x,v): the operator norm in B(X,Y").
LP = {f; f is measurable on R, || f||» < oo}, where || f||» = ([ |f(x)|pdx)1/p if

1 <p <400, and || f||z= = esssup,cp | f(x)|, f is an equivalence class.

C(I; X) : set of continuous functions on the interval I into the Banach space X.
T 1 .
1flegee = (S2p 1FCONGd) " 1 flleans = 1Flngay €T = +oc.
_ T 1/ _ .
[ Alers = |CJ2p [FG01AE) s 1 llizse = (1FlLong i T = 4oc.
(€ =1+[¢] for € R
e Let A, B be two n x n matrices. A~ B iff 3T € GL(n), T"'AT = B.

2. ON THE HIROTA-SATSUMA SYSTEM
2.1. Local Well-Posedness. Let us denote by
Ualt) = e, Ua()$(€) = " d(¢) for ¢ € H*(R), (2.1)

the group associated with the linear part of the first equation of system (LI). We
note that U(t) = U_1(t) is the group associated with the linear part of the KdV
equation. Next theorem proves LWP to system (L)) in suitable Sobolev spaces.

Theorem 2.1. Let a # 0 and 3/4 < s < 1. Then for any ug,vo € H*(R), there
exists T = T(|luolls, lvolls) > 0 (with T(p,n) — 0o as p — 0,1 — 0) and a unique
solution (u,v) of problem (I1) such that

u,v € C([-T,T]; H*(R)), (2.2)
Uy, vy € LTLE, (2.3)
Diu,, Div, € LL3, (2.4)
u,v € L2LY, (2.5)
Uy, vy € L LE. (2.6)
For any T' € (0,T) there exist neighborhoods V' of ug in H*(R) and V' of vy in
H?(R) such that the map (g, Vo) — (4,0) from V x V' into the class defined by
(Z2)- (Z26) with T instead of T is Lipschitz.

If up,vo € H"(R) with r > s, then the above results hold with r instead of s in the
same time interval.

Moreover, from the conservation laws (I.3) and (I.3) we can choose T = 400 at
least for s =1, fora+1>0 and b > 0.

Proof. Let % <s<1. Givenr € R and T > 0, let us define

Af(u) = e, [w(@®llr + luallps e + 1 Dytiall e rs

+1+T) 2 ullzrge + el poerz .- (2.7)
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Denote |[||(u,v)||| = AT (u) + AT (v). We consider the space

X7 = { (uv) € C(=T,T); B (R)) x C(=T, T} H*(R): || (u,v) ]| < o0}
and X%, = {(u,v) € XT;|||(u,v)||| < M}. Let us write the integral equations
associated to problem (1)

Dy (u,v)(t) = Uy(t)ug + fot U,y (t — t')(6auu, + 2bvv,)(t')dt,
By (u,v)(t) = U(t)vo — 3 [3 Ut — ') (uv,)(t')dt'.

We will prove that ® : X1, — X%, where ®(u,v) = (®1(u,v), P2(u,v)), is a

contraction map for suitably chosen M and T'. We have the following inequalities:

U@ uollr < cllugllr for r €R, (2.8)
T c T
[1D70:Ua(Wuollporz < WHDIUOH for r € R, (2.9)
&
[02Ua(t)uol|Lare < Wllw)llr for r > 3/4, (2.10)
1Ua(®uollzzrze < clan@+T)?|uglly for r>3/4.  (2.11)

Expression (2.8]) is a group property. Inequality (29) is a consequence of The-
orem 4.1 in [TI]. Expression (2I0) follows from Theorem 2.1 in [II]. Estimate
(210) is obtained by using Proposition 2.4 in [I4]. It follows from (2:8])-(@2II)) that
AT(U,(t)uo) < c|luolls- Let (u,v) € XT;. Then

T T
T u,v ¢ |luglls + ¢ uug ) (7)||dr + ¢ S (uug)(T)||dT
AT(@(u,0)) < elluol +/0 | (ute) () +/O D5 () (7)

T T
+c/ [[(vve ) (T)||dm + c/ | D (vug) (1) ||dT. (2.12)
0 0
Choose M = 4c¢(||uols + ||volls)- Tt follows that
lwwe 22 < luellpoerz ull2se < M?(1+ T)'/2. (2.13)

Now, by using Theorem A.12 in [I2] and Hoélder’s inequality, it follows that

1Dz (wua)llzzrz < clllualloe IDzullz | o + lullzrse 1D7ue | oz,
< TV Diullpzre || 3 Lo + MP(1 4 T)'/?
< eMATYA 4+ (1 +T)Y?). (2.14)

By replacing (213) and (2I4) (and similar estimates for v) into ([Z.I2]) we obtain
M
AT (@4 (u,v)) < =+ e MPTY2(TY4 + (1 +T)Y?). (2.15)

By choosing T > 0 small enough such that TV2(TV/* + (1 + T)1/2) < L. it
follows that AT (®;(u,v)) < &L, Similarly we have that AT (®9(u,v)) < 2. Then,

for M > 0 and 7' > 0 chosen as above, ® is a well-defined map from X7, to itself.

Analogously, we prove that ® is a contraction map. The rest of the proof is similar
to the proof of Theorem 2.1 in [I2]. O
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Theorem 2.2. Let a = 0 and 3/4 < s < 1. Then for any ug,vo € H*(R), there
exists T = T(||uol|s, ||volls) > 0 (with T(p,n) — oo as p — 0,1 — 0) and a unique
solution (u,v) of problem (Il) such that

u,v € C([-T,T); H*(R)), (2.16)
vy € LTLY, (2.17)
Div, € L°LA, (2.18)
u,v € L2L, (2.19)
v, € L°L2. (2.20)

For any T' € (0,T) there exist neighborhoods V' of ug in H*(R) and V' of vy in
H*(R) such that the map (g, 0o) — (4,0) from V x V' into the class defined by

(Z16)-(220) with T’ instead of T is Lipschitz.
If ug,vo € H"(R) with r > s, then the above results hold with r instead of s in the

same time interval.

If s=1 and b > 0, then we can choose T = +00.

Proof. Let 3/4 < s < 1. Let AZ(-) be the norm defined by (2.7). Denote by

AT () —
A () = mae [lu@lls + llullzzrs,

and |||(u,v)|| = AT(u) + AT (v). Let XT and X7}, be defined as in the proof of
Theorem 211 Let us now consider ®(u,v) = (P (u,v), P2(u,v)), where
{ D1 (u,v)(t) = up + 2b fg(vvw)(t’)dt',
By (u,v)(t) = U(t)vo — 3 [ Ut — ') (uv,) (t')dt'.
Let (u,v) € X1;. Then

T T
T w, v c|lvglls + ¢ uvg)(7)||dT + ¢ S(uvg)(7)||dT.
AT (®5(u,0)) < clfuo] + / | (we) ()l dr + / D5 (uy ) ()| d

We see that
lwvellpzz2 < llvallserz ullLarse < M2

Now, using Theorem A.12 in [12] and Holder’s inequality, we get

IDs(uwva)llrzr: < cllllvelloeellDiull 2

L2+ lullzrse | Dgvell oo 2.
< e MP1+TYVY.
By choosing M = 6¢(||ug||s + ||vo|s) and T' > 0 such that TV/2(T"/* 4 (1 +T)"/?) <

o7, we obtain AT (@2 (u,v)) < & and max;_r.7y || ®1(u, v)(t)]|ls < A. Moreover,

IN

T
191 (w, )l L2 g [[uol| + 2b||/ |(voa)(T)ldrlzz < [luoll + T ?|[vvl 2 12
0

< % + eV 2M2(1+T)Y2 < g

Then |||®(u,v)||| < M. The rest of the proof is as for Theorem 211 O
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Remark 2.1. In [16], Sakovich considered the following system:

Ugge + AU, + bVUL + cuv, + dvv, + muy + nug = 0,
Vgzz + €UU, + fOUuy + guvg + hvvg 4+ puy + quy = 0, (2.21)
u(0) = ug, v(0) = wo,

where mq # np. This system can be written as

Ugzx Uy UVg ur\
(Ummm) + Ag <Uu$) + Ay <’U’U1) + Ao <’Ut) =0, (222)
a b c d m n
Aoz(e f)’Alz(g h>’A2:<p Q)'

Since Ay is nonsingular, multiplying (222) by Ay*, we get

Uy —1 Ugzax —1 Uy —1 UVyg .
(’Ut> +A2 (mem) +A2 AO <’UU1) +A2 Al (’U’U;E) =0

If P € GL(2) is such that P~'A;'P = diag(ag,a1), where ag and ay are the

eigenvalues of A;l, by making U = (u,v)! = PV, we obtain a new system of

where

Hirota-Satsuma type. Therefore, similar results to Theorems 2.1 and [2.2 are also

valid for this new system.

2.2. Tll-Posedness to the Hirota-Satsuma System. Let us remark that if u(zx, t)
and v(z, t) are solutions of (L), then @(x, t) = MN2u(\z, \3t) and 0(z,t) = A\2v(\z, A3t)
are also solutions of (II]). This scaling argument suggests that the Cauchy prob-
lem for the Hirota-Satsuma system is locally well-posed in H*(R) x H* (R) for
8,8 > —%. It is not difficult to see that the IVP associated to the KdV equation
{ Wy + Wy + 6ww, =0,
w(z,0) = wo(x)

is equivalent to the IVP

{ Ut — a(Ugge + 6uu,) =0, (2.23)

u(x,0) = ug(x) = wo(—x),
through the transformation u(x,t) = w(—=x,at), for a # 0. Note that if u is a
solution of (2:23)), then (u,0) is a solution of problem (ILT)) with initial data (ug, 0).
Then, it follows from the ill-posedness result for the KAV equation (see [5]) that
the mapping data-solution associated to the IVP (1) with a # 0 is not uniformly
continuous in H*(R) x H* (R), for s € [-1, —3), and s’ €R.

3. ON THE GEAR-GRIMSHAW SYSTEM

3.1. Initial Comments. (1) We consider the Gear-Grimshaw system given by

Ug + Q11 Uz + Q12Vzz + b1 (UV) g + bttty + b3vv, =0,
Ve + Q21 Ugzy + A22Vgze + 70z + ba(uv), + bsuuy + bgvv, =0, (3.1)
u(0) = ug, v(0) = vp.



8 B. ALVAREZ-SAMANIEGO AND X. CARVAJAL

Suppose 1 # 0. Let A, B and C(U) be the matrices (see [I7]) defined by
_ [ 611 a2 (00 _{ bou+biv biu+bzv
A—(a21 a;22>7 B_(O T)’ C(U)_<b5u—|—b4’0 b4u—|—b6v>’
where U = (u,v)!. Let T € GL(2) such that T'AT = diag(a,a_), where a

and a_ are the eigenvalues of A, and ay,a_ € R. By making U = TV, we obtain

{ Vi(t, x) + diag(ag, o ) Vags (8, ) + BV (t, z) + C1(V)(t, 2)Va(t, ) = 0,
V(0) = T~1U,,
(3.2)

where By = T-'BT = (bij)i,j6{1,2}a Cl(V) = Tﬁlc(TV)T and Uy = U(O) Let
V = (v1,v2)t. If we make the scale change (supposing a; # 0,a_ # 0)

x X
vi(t,z) = wi (1% W)v v2(t, 7) = w2 (t, 1—/3)7
o o

then W = (wq,wz)* satisfies the following system:

81w1(t, f/s)"’ag’wl(ta f/s)"’ 1/38211)1( f/s)"’ b11/2382w2( 11/3)_""' :Oa
s s + s -

81’(02(t, II/S) =+ 8§w2(ta II/S) + 1/3 82w1(t5 11/3) + 1/3 82w2( 1/3) +o= Oa
! o’ ay/ ay/ o’

where 0;, for i = 1,2 denotes the partial derivative with respect to the i-th variable.
It should be noted that dawy is evaluated at the point (¢, ~ /3) and Jaws is evaluated
at the point (¢, 1/3) Take by = ... = bg = 0 in BI)). If ay # a_, it follows that

we should take care in any of the following cases:

° b12 }é 0 and 82w2(t, #) 7£ 82w2(t, #),
¥ _

° b21 75 0 and (92’[1}1 (f, #) 75 (92’[1}1 (f, #)
+

(2) We now consider the following system (C'(U) # 0 and r = 0 in (B)):

Ut + Ugze + A3Vzge + Uy + A1V + a2(uv)z = 0;
b1Vt + Vgza + 0203Uzee + VUL + boasuuy + boag (uv), = 0, (3.3)
u(0) = ug, v(0) = v,
where a1, as,as, by, bs are real constants, with by,b2 > 0, ag # 0, and a%bg # 1.
We define (see [I] and [15]): A = {(1 — %)2 + %}1/2 and o = 3(1 + ﬁ +A).

Consider

u(t, 5
Bty ) = (5L )ult, o *z) — o(t, o 1),

or equivalently

(3.4)

We note that this change of variable is equivalent to the one performed in item (1)
for W. Take by = by = 1, a; = az = 0 and a3 = 2 in system B3). Then ay = 3,
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a_ = —1 and A = 4. By using [84), it follows that
31u(t i) + 010 (t, —x) + B3t 31/3) + 030(t, —z) + gmu(t, 5i5)O2t(t, i)
u(t, 1%)82 o(t, —x) + 31/382u( s 3173)0(t, —x) — 0(t, —2)020(t, —z) = 0,
81u(t 5i5) — OWo(t, —) + u(t, 5i5) — 030(t, —x) + gi5u(t, 5% )02 t(t, 5i%)
+alt, m 5)020(t, —1) — 5175 82u( ) 3173 )ﬁ(t —x) — 0(t, —x)020(t, —x) = 0.
Then
ala(t’ 31/3) + 53@( ’ 31/3) + 311/3ﬁ(t7 311/3)62{1(@ 3196/3) - f)(t, —.’L‘)agf)(t, —.’L‘) =0,
Do, —x) + 050(t, —x) — u(t, 5155 )020(t, —x) + 35 02t 55 )0(t, —z) = 0,
(0, ) = tuo(3Y3x) + %U0(31f3$),
9(0,2) = guo(—z) — vo(—2).

Notice that —a(t, 5175)920(¢, —z) + 31/382u( s 3173)0(t —x) = 0:(U(t, 5775)0(t, —)),
where 9, # 02. It follows that, in general, system ([B.3]) cannot be written as
Ut + Ugge + ally + b0V, + c(Ud), = 0,
By + Bome + Gililg + by + &(10), = 0,
- l1—o_ 1/3 a 1/3
(0, ) = (2= )ug(a/*z) + fvo(ag z),
3(0,2) = (5 uo (ol 2) - Sug(al*0),

where a, b, c and a, b, ¢ are constants.

Remark 3.1. i.) To prove LWP to a system like (31]) with r = 0, we can work with
an equivalent system like (32) (see Remark[38). In this case and if oy, € R\
{0}, we can consider the two groups U, (t) = e~ (@2 and U_, () = e~ (@102
associated to the linear part of system (33) (see Theorem[3Id] and Corollary[3Z1 for
the case when |at| = |a_]).

ii.) The LWP result obtained in [I5] really corresponds to system (3.4). To prove
LWP for the more general case corresponding to system (31l) with r = 0, we could
try to obtain some suitable bilinear estimates (see Propositions [31] and [T3, and

Remark[34H.) for the case when |ay| = |a—| #0).

3.2. Definiton of X -Spaces. Let a # 0. For s,b € R, X¢p is used to denote

the completion of the Schwartz space §(R?) with respect to the norm
e e 3\2b/e\25 | 2 1/2

IFlxs, = ( (r+ag®)(OF|F(E Pdgdr) T, (36)
where F(¢,7) = (2m)~! Jpz €7D P (2, t)dadt. Tt follows that X} coincides
with the usual Bourgain space X ; for the KdV equation (see [4]).
Lemma 3.1. Letb>1/2, s > —3/2, and ag,a1 € R\ {0} such that ag # a1. Then

Xop 7 X3h

Proof. First, we suppose that ag - a; < 0. We may assume that ag > 0.
Case: s >1/2—1b. Consider v € X} N L?(R?) such that

. 1
0(¢, 7)) = ST )
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Therefore
St dr
20> b, / £ C
Pz = eboao) | e+ aeym — >
Case: —3/2 < s < 0. Consider u € X7} N L*(R?) such that
1

7 2~ de(1,6b—2).

|u(€77-)| <§>d<7- ¥ a1§3>4b5 € ( ) )
Therefore

6b 25—dd§d7_
by > b [0 _

HUHXS,% > ¢(b, ao) (R+)2 <T+a1§3>4b >
The case ag - a1 > 0 follows from the case ag - a1 < 0 and from Lemma [£1] O
Remark 3.2. Lemmal3.1l implies that the two norms |- |[x1 and || ||X7; are not

equivalent for s > —3/4 and b > 1/2. Then, it follows that Proposition[32 below is

not an immediate consequence of Proposition [Zl
3.3. Bilinear Estimates in X -Spaces.

Proposition 3.1. Given s > —3 and a # 0, there exist t/ € (—3,0) and e > 0
such that for any b € (3,0 + 1] with b’ +1—b < e,

l(wv)allxe , < Clasp) lullxe, lv]lxe,. (3.7)

Proof. The result follows from Corollary 2.7 in [I3], and from the fact that if

-~

gz, t) = f(x, _La) then g(&,7) = |a|f (&, —aT). O
The following lemma contains elementary calculus inequalities.
Lemma 3.2. Ifb > 1/2, then there exists ¢, > 0 such that

dzr Cp
< . 3.8
/ AT Tl =% = Tall] (3:8)

If0<a< B, and B > 1, then there exists c(q 5y > 0 such that

dx C(a,B)
< 2 . 3.9
/<1+|x—a'|>a<1+|x—a|>ﬁ ST ]a— e (3.9

Proof. To prove ([B.8) we consider the two integrals corresponding to |x — n| > |n|
and |z —n| < |n|. To prove B3) we may suppose a’ = 0, then we consider the
integrals corresponding to || > |a|/2 and |z| < |a|/2 (see (2.12) in [2]). O

Next lemma will be useful for the proof of Lemma

Lemma 3.3. Ifs € [-2,0], b/ < £ — 1 and b > 1, then there exists c(spp) > 0
such that

3—4s + 2 —28d
716 9) = 7y +|§|>>2b/ @ / <§3<Ly+ 3/|4 s S e (310)




SOME SYSTEMS OF COUPLED KDV EQUATIONS 11

Proof. i.) First, we suppose |y + 3| > 1. Since s <0 and b > 0, it follows that
g 3—4s y + 2 —2s dr
$1(6:y) < | |3 | —|2b/ 3,2 1/2)2[)2b
(&3 (y+2)) (L + [§P 22 — (Jy + 3/4]1/2)2])
Since b > 1/2, it follows from (B:8)) that
(€Py +21)~*/3y + 2|72/3 . |y +2|72/3
(3 (y+2) Wy +3/412 = ]y 3/
where in the last inequality we have used b’ < % — % and s > —%.
The case |y+2| < 5/2 is immediate. If [y+2| > 5/2, then |y+3/4| > |y+2|—-5/4 >
|y +21/2; hence ¢1(&,y) < c(appnly + 2175 72 < ciapp), for s > —3/4.
ii.) Second, we suppose A Y+ 3 < 0. Since s < 0 and b> 1, it follows that
1 1 1
372s|y 49|72 [Ho Sdx
916y < o < 3 |y2 —|2b’ / 3 o 31 226
(&(y+2)) o (I+[EP(y+ 17 +2)%)
€132y +27% /+°° dz €32y +27%
B+ Sy 2P T (@)
Since 1 <y+2< %, b <0, and s <0, it follows from the last inequality that

uleny) < ey 2
1§,y) <c C(s,b) <€3> oy S C(s,bb)

(bl (57 y) <o

where the last inequality is a consequence of the fact that b < 5 — %
iii.) Finally, we consider the case 0 < y + % < %. Since % <y+2< %, s <0 and
v <3 - i, it follows that

. |§|%772s too €] 2 da
(& y) < s(1+|§|3)—2b'/0 (1+ €3 (y—i— )|1 [)2b

y+3/4

w0 ey + ha
< o | TG D2

Now, we split the last integral into two parts, namely |z| < v/2 and |z| > v/2. Since
2b > %, it follows that

/ﬂ €]2 (y + 3)2d2 /f dz /f dz
< — - <c — - <c
o (H[EPG+HT—22)2 = Jy 1=222 =" )y |1 —21/2

On the other hand, since 22 > 2 implies 22 — 1 > 22/2, and by making the change
of variable & = |¢|2 (y + %)%z, it follows that

e €2 (y + 2)2dz oo g
3 apa = O oo - Cb
vi L+ 1P+ 31 —22)) o (1+22?)

The next eight lemmas will be used for proving Proposition

Lemma 3.4. IfV < —l and b > l then there exists ¢, > 0 such that

|§| d§1d7'1 1/2
(r+e)" // (r1 —&F) 2bT—T1—(§_§1)3>2b) < ¢ (3.11)
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Proof. Since b > 1/2, it follows from (3.9) that

/ dmy < Cy
(=) (r—m = (§ &)%) ~ (1 =& +386(§ — &)
Then, it is sufficient to prove that

5k / & -,
A+Fr+&) > ) Grr-@+seaE-a® =

By making the change of variable 7 = £3(1+ 2), we need now to verify the following:

I35 / (S <ec
A+ 18]z +2)72 ) (14632 43861 (E = &)D* —
By performing the change of variable £ = £z inside the last integral, and z = 3y,
and since x — 2?2 = 411 (x— —) it is not difficult to see that the expression we need
to prove now is the following

P&, y) = 1+ |€PI3y + 2)) 2 / (14 €13y +1/4 — x2|)% :

i.) First, we consider the case |y + 1/4| > 1/12. Then
€° / dz
< <
W) = T el T2 ) T PR — (T AR S
where in the last inequality we have used B.8) and & < 0.
ii.) Second, we assume —1/3 <y < —1/4. Since 1+ |£2|3y + 2| > 1 + [¢]? and

b < —1/4, it follows that i €°° 1. Then
=S A ePlsyra) 2 = [rep) 2 =

(b(g )< /+oo |§|3/2d$ - /+oo dz -
C C, —_— Cp.
=0 O+ Ry + AP+ =P )y Q22 =@

iii.) Finally, we suppose —1/4 < y < —1/6. Since b’ < —1/4, and by making the

C.

Co,

change of variable z = (y + 1/4)'/22, we get
+o00 5 3/2 1/2
y+1/4)"/=dz
¢(§ay)§0/ ||3( /Y N =6
o (I+I[EPW+1/4)1-2%)
where in the last inequality we have used the following estimates. Since b > 1/4, it
follows that (|¢]3(y + 1/4)|1 — 22)*/2 < (1 + [¢]3(y + 1/4)|1 — 22|)?*. Then
/*/5 €2+ 1/ /\/5 dz -,
o (H[EPy+ /9L =22))% 7 Jo 122142127
Moreover, since 22 — 1 > 22/2 for z > /2, and b > 1/2, it follows that
o PPy +1/4) 2 0202 (y +1/4) 2> 0 2da
3 N = 3 7 = 2
va (A+[EPy+1/4)1 = 22)) va 1 F Py +1/4)2 o l+w
0

Lemma 3.5. If s € [-2,—1], b/ € [-3,2 — 1] and b > %, then there euists

C(sbbr) > 0 such that

Ié“l 61(€ = &)|**dmd& 1/2
// (r) =&)Y (1 — 1 — (£ — &)3)2 ) S ey (3.12)

(T +&3)-V (&)~
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where A = A(E,T) is defined as
A={a,m) eRfal 2 Lig-al 2 LIr—n - (=&’ < In - &l < |r+ &

Proof. We denote by xp the characteristic function of the set D. We remark that
A CC xR, where C=C(&7) ={& € Ry |7 — £ +3661(€ — &)| < 27 + &%} By
using (39) which is valid for b > 1/2, it is enough to get a constant upper bound

on the following expression

o(&,7) =

€)? /|§1 £ — &) xoen(€)d&
(T +&3)=20( (1= +366(E-&)*

From now on we assume £ # 0. By makmg 7 = £3(1+y), we see that it is sufficient

to get an upper bound to

h1(&y) =

€)? /|§1 E— &) X068 (14y)) (§1)dE
(E3(y +2)) =2 (&) 2 (E3y +3861(€ — &) '

Now, we make the change of variable &; = £x. Since z — 2% = % (x — %) we get
o / (@ — 3)> — 117> xp, (z)dx
(€ +2)728) > J (Ey+3(7 — (@ —5)))*
where Dy, = {z;]y + 3(z — 2?)| < 2|y + 2|}. We denote by E, the set given by
{x; ]y + 3/4 — 32| < 2|y + 2|}, then we need an upper bound on the quantity
[ / |22 — 317> x&, (v)da
€y +2)72() 7> ) (€(y+3/4—322))*
i.) First, we suppose |y + 2| > 1. We remark that |y — 322 + 2| < 2|y + 2| implies
|22 — 31728 < esly +2/725 + ¢, for s < 0. If ¢1(€,y) is given by (B.10), then we get

1
¢(§a y) < Cs(bl(é.a y) (1 + W) < C(s,b,b")>

where in the last inequality we have used Lemma [3.3]
ii.) Now, we assume |y + 2| < 1. In B, we have that |y — 322 + 3| < 2|y +2| < 2,
then 0 < 2? < L. Hence E, C [—1,1]. Moreover, |(y +2) — (322 + 2)| < 2|y + 2|

implies |22 — | § 5 < 3(2® + &) < 3|y + 2|. Therefore, since s < 0, we see that

951 (57 y) <

(& y) =

csl€P~ /1 |y +2|**da
< < /
R T e R N T T T el
where the last inequality is a consequence of ([B.10). O
Lemma 3.6. If s € (—3,-3], b/ € (—1,0], and b > 1 with ¥’ — b < min{—s —

2
35— %}, then there exists c(sppy > 0 such that

2

// €066 (€ — &)| "> dgdr

(m - 51 G- (-6
where B = B(&1,71) is defined as

B={(&7) e RG] 2 L[6=&| 2 LJr—n—(6-&)°| < [m =€, [7+€°] < [n—& [}

1/2
E >2b) <y, (3.13)
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Proof. We remark that in B: |1 + 2€3 — & — 36¢1(€ — &)| < 2|m1 — €}|. By the
inequality (3.9), it is sufficient to get an upper bound on the expression
1) - — ([ AT  T S

(i = &P\ g ()72 (m + 263 = & = 3¢6(E &)~/
where B' = {€ € R;[&1] > L[ ~& [ > 1, |1 +26° =€ = 3661(E &) < 2[m =&} Tt
is not difficult to see that B’ = B} U B}, where B} = {¢ € B';|263 —3¢6 (€ —&1)] <
3l — &} and By = {€ € B's 3lm — ] < [26% - 3¢61(6 - &)| < 3|m — €7}
i.) In B{ we have that:

Sn = €1 < In — € +26° — 366a(6 - &),

€] < 126 - 3¢61(6 ~ &) < 51m — €3],
and
l€61(€ — )] < 126° ~ 3661 (€ ~ €] < 5Im — €.

Since v’ < 0, and —% < 5 <0, it follows that

, c [EPHEE (€ — &n)| 22 dEN1/2
1) < g, G )
, I —€7| 1/2
< m_gﬁ(/o (1+ &) de)

C(s,b)
: <C( b
~ 3/ _3_ . — s, )
(i —&)b-v2s

where in the last inequality we have used the fact that ' — b < —s — %

ii.) First, we remark that in B) we have that
3le€1(€ — &) < |26% = 3¢61(€ - &) < 3|m — €.

We define the function u(€) = pe, - (§) =71 + 263 — & — 3¢6(£ — &), for € € B'.
We remark that p/(€) = 3(€ — &) +3¢% = 6(¢ — £6)? + 2£2. Now, we decompose
By into two parts: By, and By ,.

Let By ={£ € By; 1 <] < 10[£]}. In this set we get:

L+ |m = &) < & +2]26° = 3¢ (€ — &)| < clé)’.
Moreover, since —1 < s < —%, it follows from the last inequality that

|§|2(1+s) 1 - Cs
<§>72s = <§>2(—25—1) —= <7_1 _§i°,>§(—2s—1)'
Since u'(€) > 3€2, it follows that
1 1 c

Gy
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Then, since b’ > —%, and —1 < s < —1/2, we get

, Cs ' (€)dE Nz
) = g, were)

Cs (/ du )%
(11— &) 55 \ju<aim—gg) ()

C(s.) .
—gyreEeE S e

where the last inequality is a consequence of b’ — b < —s — § and s > —5.
Finally, we consider Bj 5 = {£ € By; 10|¢| < [&1]}. Since —1 <s< —=z, we get

|€|2 1+s) 1
GRRNGESE A
Moreover, in Bj , we have that
L+ |m =& < Jal® +2/26% = 3¢61 (€ - &) < & .
Since p/ (&) > 2¢2, we see that

1 c c
<< ——= for £ € BY ,.
,u/(g) 5% <7'1 —€1>2 %2
Then, by using b’ > —%, —1<s<-1/2,and ¥ —b<s— %, we see that
I(By,) < @ < cp.

- gp S

Lemma 3.7. If b’ <0 and b > l then there exists ¢, > 0 such that

|§| d§1d7'1 1/2
T+§3 // (1 + &) 2bT—T1—(§_§1)3>2b) < Cp- (3.14)

Proof. Since b > 3, it follows from (3.9) that

/ dmy < Ch
(i + 2T =71 = (§ = &)%) ~ (17— & + 386 (6 — &) +267)%
Then, it suffices to prove that

j€1? / 3! .
(T+&)72 ] (1= +3&(E - &) +26)% — 7
By making the change of variable 7 = £3(1+2), and then & = £z inside the integral,
it suffices to bound
j€1° da

e5) = e T | T e T
We define the function u(z) = p,(z) = 223 — 322 + 3z + 2. Then y/(z) = 6(z —
)2+ 3 >3 Since ¥’ < 0and b > 1, it follows that

cléf® p(z)d 3 dp — ¢
69 < oy g | s <6 | G =
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Lemma 3.8. Ifs € [—%, —%], b e [—%, %——] and b > , then there exists c(sp) > 0
such that
|§| // £1(§ = &) *dmdé )1/2
<cw, (315
e T L et - e-epm)  Scenr B

where Ay = A1(€,7) is defined as
Ar={&,n) eR}G| 2 LI -&l 21 |r—n— (- &)°| < [m +&| < |7+ €]}

Proof. We remark that A; C CxR, Where C=C1)={& eR;|T—E3+3¢& (€ —
&) + 28| < 2|7 + €3} Since b > 1, it follows from (BJ) that it is enough to get

an upper bound to

€7 / €1(€ = &)1 xeen (&)dé
(r+&5)72g) =2 J (7 — & +366(6 — &) +269)*

We assume ¢ # 0. Now, we make 7 = £3(1+y), and & = £z. Since s < 0, it follows

that it suffices to bound

g [ — 2?2 xp, (2)dz

€y +2) (y +3(x — a?) + 227))>"

where D, = {z;|y + 3(z — 2?) + 223 < 2|y + 2|}. We remark that |22 — 2| <
|23 — 322 + 3z — 2|, for all z € R. Hence, |z — 22| < 3|y + 2|, for z € D,,. We
denote by pu(z) = py(z) = 22° — 32% + 3z + y.

i.) First, we suppose |y + 2| < 1. It is not difficult to see that D, C [-1,2]. We
now assume that || < 1. Since p/(x) > %, $<0,b <0, and b> %, we have that

2 &P py (x)da d
o< [ ey <o g = o

Next, we consider the case |{] > 1. Since s < 0 and b’ <0, it follows that

€02 [ly+2da
¢(§7 y) S CS | |73b,| + 2|7b/ < 3 ( >2b
7%y & py(x)
_ 4 _ / dw
< el e [ <,
where the last inequality is a consequence of b > =, —= < b <5 — %, —% <s< —%.

ii.) Finally, we assume |y + 2| > 1. Since p/(z ) = 6(:1: —x)+3 > |22 — 2|, and
s < —%, it follows that

|§|325|y+2|2“/ iy () de
(Ew+2)"2"  Jp, (Epy(x)*

_2s / _4s
< (Lt ey +2)E Ty 4o /
0

o(Ey) < cs

T dw
(w)2b

Finally, since v’ < 5, s > —4, and b > 5, we have that ¢(&,y) < c(sp)- |



SOME SYSTEMS OF COUPLED KDV EQUATIONS 17

Lemma 3.9. If s € (=3,—2], b/ € (=1,0], and b > 1 with ¥/ — b < min{—s —

3

5,8 — %}, then there exists c(sppy > 0 such that

1 [EPOIIE8 (€ — &)| > dedr 1/2
e, T e e o) St 619

where By = B1(&1,71) is defined as

Bi={(& 1) €eR%|&| > 1, |6~&1| > 1, |r—m—(6=&)%| < |m+ED|, [7+€3) < |m+€3)}.

Proof. We remark that in By: |1 +263 — & — 366, (€ —&)| < 2|m1 +&5|. Since b > 4
and b’ € [—3,0], it follows from (B3) that it suffices to bound

= 1 €209 |8 (€ — &) 2deE 1/2
1B = g (/Bl T g RaE- )

where By = Bi(&,711) = {€ € Ry |&] > 1,6 =& > 1, | +26% - & - 366, (6 - &)| <
2|7'1 + €3|} ‘We Split Bl = Bl,l U BLQ, where

By = {6€Bul2e® 36616~ &) ~ 26| < oln + 1), and
Bip = {6€Buygin +&|<[26° - 3661(6 ~ &) — 263 < 3l + &I}
i.) In By we have that:
Sl + €1 < In - €8+ 26 — 3¢ - )l
Since 263 — 3¢€,(€ — &) — 263 = (€ — £1)(2€2 — €61 + 2€2), we also have that
€l < I (€ - )] < 126° ~ 3¢ (€ — €1) — 2631 < 5l + 83,

Since b’ <0, and —% < 5§ <0, it follows that

ITi+€8| 1/2
3 Co 2+4s
I(By,) < —(/ 1+ d )
( 171) = <T1 +§f>b—b Is 0 ( 5) §
C s,b!
(o.b) < C(s,07)>5

(e
where in the last inequality we have used the fact that b’ — b < —s — %

ii.) In Bl)g we have that
€] < |€61(€ - &)] < |2€% = 3E61 (€ - &) — 267 < 3|m + &)

We define the function p(§) = e, (6) = 71 + 28 — & — 3¢61(€ — &). Then
(€)= 3(6—&1)2+36% = 6(6 — 561)% + 567, We sece that By = Bf , U B} 5, where
Biy={¢ € Bia; 1 < |&] <10[¢]}, and B, = {£ € Bi2; 10[¢[ < [&1}. The rest

of the proof is similar to the proof of Lemma [B:6Hi.). Since —% <s< —%, b > —%

and b/ —b < —s — %, it follows that I(Bb) < ¢(s,pr)- Finally, since —1 < s < —%,

V' > —% and b’ — b < s — ¢, we have that I(sz) < Co)-

O
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Lemma 3.10. If s € [-2, 1], b/ € [-1,2 — 1] and b > L, then there eists

2
C(s,b) > 0 such that

|§| |&1(€ — &) 25dmd&, 1/2
//Az (1 — &N (T — 7 + (£ — &1)3)2 ) <cey,  (3.17)

(r+e)-ve)—=
where Ay = Ag(f, T) is defined as

Ay ={(&,m) eR} &> 1, -&l 21|t —n+(E-&)P < In =& < |7+ &%)}

Proof. Tt is not difficult to see that Ay C C x R, where C = C(&,7) = {& €
R; |7+ & —36£(¢ — &) — 268| < 2|7+ €3]}, Since b > 3, it follows from (39) that

it suffices to bound

1€)? 1€1(& — &) xe(e,m (&) dE
(r+&3)720 ()~ / (T+8& =364 (6 - &) —26)%
We assume £ # 0. Then we make 7 = £3(—1 +y) and & = £z. Since s < 0, we see
that it is sufficient to bound
3-2s x —x2|72 z)dx
w6 = G | s 2

where E, = {z;|y — 3(z — 2?) — 22| < 2Jy|}. We remark that 2% — z| < |22% —
322 + 3z|, for all z € R. Hence, |z — 2?| < 3|y|, for z € E,. The rest of the proof is

similar to the proof of Lemma
i.) If ly| <1, then E, C [—1,2]. First, we suppose that |{] < 1. Since s <0, b <0

and b > 1

5, it follows that ¢(£,y) < c(sp). Next, we assume that || > 1. Since
1

se[-2,-1, 0 e[-1,%5— 1] and b > L, we obtain that ¢(&,y) < csp)-
ii.) Since s € [-2,—3], b/ < £ and b > 3, we get ¢(&,y) < ¢ for |y| > 1. O
Lemma 3.11. Ifs € (—3,—1], ' € (—1,0], and b > 1 with ¥ — b < min{—s —

3 13— —} then there exists c(sppy > 0 such that

27
E[2A+9)|¢¢, (€ — &) 22 d€dr 1/2
(n— 51 //32 25 (1 + 83 (1 — 1 + (E—&)° >2b) < Csppy,  (3.18)

where By = Bo(&1,71) is defined as

By={(¢,7) e R% |G| > 1,[6=&1| > 1, |[7—m1+(6-&)°| < [m—&], |7+&%| < | =&}

Proof. In By we have that |11 + 3661 (€ — &) + €| < 2|m — &J|. Since b > £ and
v € [—3,0], it follows from (FJ) that it is sufficient to bound

. 1 20916y (€ — &) 20dE 1/2
LB) = (1= &)° (/1§2 (§)725(m +38&1(£— &) + 5%}‘217/) ’

where By = By(&1,m) = {£ € Ry |G| > 1,16 - &] > L, |m +3¢61(6 — &) + & <
2|1 — €3]}, We see that By = Bg)l U 3272, where

By = (€€ Byl2gl +3661(6 - &)| < gln — 1), and

Bra = {€€ Buizln — €l < 2 +366(6 — &) < 3ln — €11}
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i.) In 3271 we have that

SIn — &1 < In + 36616~ &) + €8], and

1
€] < [€€1(E = &)I <267 + 3861 (€ - &1)| < §|7'1 - &.
Since b’ <0, —% <s<0and bV —b< —5— %, it follows that L(.Bz)l) < (s,
ii.) In Ez)g we see that
€] < 1€€1(E = &)] < 267 + 3861 (€ = &) < 3lm — &)
We define the function pu(§) = pe, -, (§) = 71 + 3661 (€ — &) + &3
First, we consider 3512 = {£ € Byo; % < |€1] < 100|¢]}. In this set we have that
(= &) < &l + 20267 + 3861(§ = &)l < e,
Since s € [—1,—3], it follows that
20+
(&)=
Since 3&1(—&F — 411 + 4p) = (66.€ — 3£2)2, it follows that |u/(€)| = |6&1€ — 3€2| =
V/3& (=& — 4m + 4u). Then

2,4
< <co(m — £)5 5.

3 dp 3
L(By,) < (/ )
2,2 (m 53 U _ e3\bfE—3 <2lm—e3) V&l — & — 4 +4p] (u)—2
Ce(n =) hEts (/ dp )%
51k ul<2im—e3) 18 JA+ 1 — | (p)2(0-0+0))
T — &) 05T S T = &3 b—§+b+a—%
< ey 8L < e {8l

|E1|7 (€3 + 4my) 7 (€ +4m)3

b*s v
< eepnylm — &) +i < C(s,b1)5

where in the second inequality above we have used (2.11) in [13], and ' > —1; the

last inequality above is a consequence of the fact that b — b <s5- %.

Secondly, we consider 3272 ={6€Byy1< |6 < %} In this set we have
|§|2(1+s)

(&~

Since s € [~1,—4] and b’ > —3, it follows that

4
3

2
S Cs<Tl _§§>3+ B

(i — &) <cl¢f’  and

(i — &) b-itv+i
SIGEEEE
If ' —b—5+2 <0, then L(B3,) < c(s). Thus, we suppose that b’ —b— 5+ 2 > 0.

Now, we make 71 = &(z — 1)/4. Hence

L(B§)2) S C(s,b’)

— _p—324p'+5
<3(z 5)> b—5+b'+3

L(BE%Q) S C(s,b')
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Suppose first that |z| < 1. Then
<§3>b’—b—§+%
B
where in the last inequality we have used the fact that b’ — b <

Now assume that |z| > 1. We see that

(€h(z —5)) *-5ts
(g12)s

where the last inequality is a consequence of b’ — b < 3~ %.

Finally, we consider the set ES’Q = {€ € By;100/¢] < |&1]}. In 332 we have

(1= &) <&’ + 2028 + 3¢61(€ — &) < &,

and |/ (&) = 16&(€ — &) + 383 > (33582 — 3)&f > 2¢f. Moreover, the fact that

2 3(b'—b—2+2)—-1
L(B35) < ¢(s,b,) < &P TP TETETE <),

s _ 3
37 1

32 3 A\b —b—54 T
L(B35) < c(sp,pr) < C(s,pp) (€7 2) s <),

s € [-1,—3] implies that
|§|2(1+s)
(&)=

S <§>2+4s S 1.

Then

s ¢, 1 (©)ldE \*
L2 < g (/B <u(£)>‘2b')

=

Cs (/ du ) <.
—— | S Cs)s
(11— &)t s \uj<air ez ()72 (50

where in the last inequality we have used b’ > —%, b —b< 35— % and s > —%. a

Remark 3.3. It is not difficult to see that min{—s—3, % —3} < min{-s—3,s—¢},

7
Jor s > —g5.
The following proposition is the main result of this subsection.

Proposition 3.2. Given s > —%, there exist b’ € (—%, 0) and €5 > 0 such that for
any b € (5,0 +1] withd +1—-b < e,

[(vo)allx:, S Csbb) ||v||§(;;, (3.19)
Iuwallx-1 < i lullks (3.20)
Jwlx, < el ol (321)
R [ gy 1 3:22)

where cs 0y is a positive constant depending on s, b, and '

Proof. Similar to the proof of Corollary 2.7 in [13]. Here, we use Lemmas B.4H3.0]
to prove (B19) and (320); the positive number € is given by
Ilnin{—s—%,s—kg}, 56(_%7_%)a
€s = 1 S >0,
min{—s — 3,5 + 2}, s€[-3,0),
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where s is any fixed number in the interval (—2, —1).

Lemmas B3 TTlare used to prove B.21)) and [B:22]). Now, we will sketch a proof of
(BZ1). We denote by f and g the functions given by f(&,7) := (1 +&3)2(€)0(€, 1),
and g(€,7) = (r—€){€)"0(6,7). Then lfllzzzz =l and lglzzzs = ol
The case s > 0 follows from Lemma[Bfland from the inequality (£)® < (&)°(6—&1)°.
Suppose now that —2 < s < —1. Then

4

lww)allxs, < comliulxe, ols +eo S0 Illzece,
j=1

where the first term on the right-hand side of the last inequality corresponds to the
case when |&1] <1 or [€ — & | <1 (which reduces to the case s = 0), and

I |§| // |f( 51,T1 g€ = &7 —m)[[&(§ — &) ~*d€idn
T r+ )y (m+&)(r—m) - (£-&)3)° ’

where

Ci = {EnslalzLlE-&al>21|(r-mn) - (€-&)P <In+& < T+,
Co = {&n)lal=>1LlE-al>1|(r—n) - (E-&)° < |n+&,
I+ &< In+ &7,
Gy = {Enhlal2Lle-&al21n+&l<|(r—m) - (- &)’ <7+,
Ci = {En)slal>2LlE-&al>21n+& <|(r-mn) - (E-&)°,
(T =) = (€= &)°| > |7+ €[}
The result now follows from Lemmas B.83.11l The case s € [—3,0) follows from
the last case and from the inequality (€)5~%'|& (€ — €1)]¥ % < ¢, which holds for
|&1] > 1 and [€ — & | > 1, where ' is any fixed number belonging to (—2, —1). Then
min{—s— 3,2+ 1}, se(-2,-1),
€s = %, s>0,
min{—s" — %, % + i}, s € [—%,0).

O

Remark 3.4. i.) Suppose a € R\ {0}. By making similar calculations as in the
proof of Proposition[31), it follows that Proposition [3.2 still holds if we replace the
super-indices 1 by a and —1 by —a and the constant c(sppry Y Ca,s,b,p')-

ii.) Consider the bilinear estimate, ||(uv), ||X 3 < Csib b/)||u||X 1 ||v||X L of Kenig,
Ponce, and Vega [13]. In the case |&1] > 1 cmd |€ — &1 > 1 by symmetry it 1s
possible to assume that |7 — 11 — (€ — &)3| < |11 — &}| (see the proof of Theorem
2.2-[13]), and then we need to consider only two regions of integration A and B (see
Lemmas 2.5-[13] and 2.6-[13] respectively). We note, however, that in the proof of
(ZZ1) and (F22) there is no such symmetry to assume and for this reason the four
regions of integration C1,...,Cy (and Lemmas[TB3T1) were considered.
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3.4. Local Well-Posedness to the Gear-Grimshaw System. From now on we
consider a cut-off function ¢ € C*°, such that 0 < ¢ (¢) <1 and

(1<,

v(®) —{ 0 if [t >2.
We define ¢ (t) = 1(¢/T). To prove Theorem B we need the following result.
Proposition 3.3. Let s€ R, -2 <V <0<b<¥ +1,T€[0,1],a#0. Then

[1()Ua(uollxa, = cwup) lluolls, (3.23)
t
or(®) [ Ut =@z, € o TP, (320

where Uy (t)uo(€) = exp{—iat€}iio ().
Proof. ([3:23)) is obvious. The proof of (3:24)) is practically done in [§]. O
We now prove the following theorem:

Theorem 3.1. The IVP (31) with r =0 such that A = (ai;) ~ al for some a # 0
is locally well-posed for data (ug,vo) € H*(R) x H*(R), s > —3/4.

Proof. The proof follows from the theory developed by Bourgain [4] and Kenig,
Ponce and Vega [13]. Since A ~ al, it follows that a;; = a2 = a # 0, and
12 = a21 = 0. Let

F(u,v) = b1(wv)y + bauuy + bsvv,, G(u,v) = bg(uv), + bsuuy, + bevvy,.
We will consider 1)) in its equivalent integral form. Let U_,(t) be the unitary
group associated with the linear part of (31]). We consider

D(u, v)(t) = (P1(u, v)(t), Pa(u,v)(t)),

where

Oy (u,v)(t) =h(t) U_q(t)uog — b7 (t) /O U_o(t —t")YF(u,v)(t")dt,

t
Bo (1, 0) (1) =(t) U_a(t)vo — (1) / U ot — )G (u, v)(t')dE.
0
Let s > —3/4. Let b, V' be two numbers given by Proposition Bl such that
e=b+1—-b>0. We will prove that ®(u,v) is a contraction in the following space
Xs]\,g,a = {(’U,,’U) € X;l;l X X;l;l7 ||(u7v)||X;g><X;g S M}a

M

where H(U’U)HX;SXX;S = H“HX;;‘ + ||’UHX;£1. First we will prove that ® : X%
Xs%)a. Let (u,v) € Xs%)a. By using Propositions [B.3] Bl and the definitions of

F(u,v) and X , we get

[@1(w, ) x-o < Clluolls + CT|F(u, 0) x
s,b s,b

M M

S I+OT€M2S 7,
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where we took M = 4C(||uol|s + ||vol|s) and CTM = 1/4. In a similar way we have
||(I)2(U7U)||X;g < Mj2.

Therefore ||®(u,v)|| y-a, y-« < M. A similar argument proves that ® is a contrac-
s,b s,b

tion. We conclude the proof by a standard argument. |

Remark 3.5. Consider the IVP {31) under the hypothesis of Theorem [31. By
making the scale change of variables u(t, ) = u(t,a'/3z) and o(t,z) = v(t,a'/3x)
we can avoid consideration of the modified Bourgain-type spaces X¢p to prove local-

well posedness for data ug,vo € H*(R) for s > —3/4.

Remark 3.6. Here, we keep the notations of Section[ZIH(1). Suppose that r =0
in system (31). Suppose also that A = (a;;) ~ diag(at,a_), where oy and a_
are the eigenvalues of A, with ay,a— € R\ {0}, ar # a—. Suppose moreover
that the formula Oy (u(t)v(t)) = dpu(t)v(t) + u(t)Oxv(t) holds for allt € [0,T] (this
is true for example if s > 1/2, and u(t),v(t) € H*(R), for all t € [0,T]). Under
these assumptions, we will show that it is possible to obtain system (32) from system
(&), with C1(V)V, containing only terms of the form (v1v1)z, (v2v2), and (vV1v2).,
where V = (vi,v2)t. If a12 = ag1 = 0, there is nothing to prove. Then, we suppose

that a1z # 0; the case agy # 0 is similar. The matrices T and T~ are given by

a1 —ao_
T _ 1 1 T_l _ a2 a1z 1
Qa4 —ai a_—ai ’ — ar=ann g :
ai2 ai2 aJr a— al2

a - xy—a
ThenV = (2 ="=q 4 M2 g 220, — 92 4)t Now, we see that

a2 avi + bvy  buvi 4 cus Oz 01
CiV)Ve = ap —a_ ( dvi +eve  evy + fug ) ( Ozv2 )’

where a,b,c,d, e, f are real constants depending on by, k=1,...,6, a;;, 1,7 =1,2,

a4 and a—. The result now follows.

Theorem 3.2. The IVP (31]) with r = 0 such that a;2 = as1 =0, a;1 = —ag2 #0
is locally well-posed for data (ug,vo) € H*(R) x H*(R), s > —3/4.

Proof. Without loss of generality (see Remark B:4H.)), we consider the case a1; =
—1 and ag9 = 1. Let
F(u,v) = by (uv), + bauuy + bgvv,, G(u,v) = ba(uv), + byuuy + bgvv,.

We consider ®(u,v)(t) = (P1(u,v)(t), Pa(u,v)(t) ), where

Dy (u,v)(t) =9(t) Ul(t)u0—1/;T(t)/ Ur(t — ') F(u,v)(t")dt’,

0

Do (u, v)(t) =1p(t) U_1(t)ve — Y1 (t) /O U_1(t —t")G(u,v)(t")dt'.
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Let s > —3/4. Let b, b’ be two numbers given by Propositions Bl and B2, with
e=0b+1—b> 0. Proceeding in a similar way as in the proof of Theorem B.], using
Propositions BJIH3.3] it follows that ®(u,v) is a contraction in the following space
xé\f[b = (’U,,’U) € Xsl,b X X;bla ||(uav)||Xsl,b><X;; S M}a
||(u,v)||X;be;; = HuHX;b—i— ||v||X;b1, M = 4C(|Juols +|[volls) and CT°M = . O

The following result is an immediate consequence of the last theorem.

Corollary 3.1. Let s > —%. Suppose that r = 0 in [31). Suppose also that
A = (a;;) ~ diag(os, o), where ag and a_ are the eigenvalues of A with ay,a_ €
R\{0}, ay = —a—. Then the IVP (1)) withr = 0 is LWP for data ug,vo € H*(R).

3.5. Future Work. Suppose a,a’ € R\ {0} and |a| # |a’|. We remark that an
interesting problem for a future research is to determine whether or not Proposition
is still true when we replace the super-indices 1 by a and —1 by a’. We point
out that this result (in general) is not an immediate consequence of the calculations
we did here for proving Propositions [31] or or from the calculations done in
[13] to prove Corollary 2.7-[13]. This result would let us to prove LWP for the
Gear-Grimshaw system BI)) with » = 0, when a12 = a21 = 0, |a11| # |age|, and
a1, a2 € R\ {0}. Moreover, if this result is true, we also could obtain LWP for
system (B.I) with » =0, when A = (a;;) ~ diag(a,a_), where a4 and «_ are the
eigenvalues of A with ay,a_ € R\ {0}, |at| # |a_].

4. APPENDIX
Here we prove some properties of X -spaces.
Lemma 4.1. Let b >0, s € R, and ag,a1 as in Lemmal3dl Then for all a # 0
X;% N X;z C Xgy, and
ullxe, < C(a,ao,al,b)(Hungf’b + HUHX‘”b)

First proof. Let v be an element of X9 N X}. Then

4 4
Iolike, =3 [ (€% (r -+ ag®lo(e.m)Pdar = 3 1,
=1 YA j=1
where
A ={(7);£>0,7>0}, Ay ={(£,7);£<0,7 <0},
ABZ{(gvT);§>OvT<O}a A4:{(€77);§<057—>0}'

We consider the case a > 0, ap > 0, and a; < 0; a similar argument works in the

other cases. It is not difficult to prove, considering regions A; and As, that

a2
L+D< 2(1 n —) V]2
agp s,b
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To estimate I3 and 14 we consider

|T+ a§3| < |Irt+ a0§3| + ‘aof‘o’ — LT‘ + a‘ﬁ?’ — —T‘
a1 |ai|
ap + a a
< Jrtal’ |+ ———Ir+ &+ —|r + ),
|as | |as |
therefore
ag +a

2b
2 2
B I < oL+ S ) ol + ol

Second proof. We claim that for all x,7 € R, we have
1+ |7+ az| a—a0>
< . 4.1
(1+|T+a0x|)+(1+|r+a1x|)_<a1—a0 (4.1)
We will first prove that for all £ > 0 and t € R,

§+[t+al |a — ao|
J(,t) = <14 —-.
0= iral e ivad = T la—a

Since
E+lt+al <E+|t+ao+a—ao <E+|t+aol + |a— aol,

it follows that
la — aol la — ag
J(&t) <1+ <1+ .
(&) E+t+aol) + (E+t+ai]) [t + ao| + [t + a1
Taking t = x — (ap + a1)/2, co = (a1 — ap)/2 and = = w ¢y, we see that
1 B 1 1 1
t+aol +[t+ail |z —col+ |z +col = feol lw— 1]+ |w+ 1]

Since the function

1 1/2w)  if w>1,
flw) = =< 1/2 if —1<w<1,
jw = 1]+ Jw+1] “1/(2w) if w< 1.

satisfies 0 < f(w) < 1/2, [@2) follows. To prove [@.1]) we take { = 1/|z| and t = 7/x
into (@.2]). Hence

b
a — ag
follez, < e (229 (g + by

O
Thus we can define X9 = X9 N X}, with norm given by Hw”X:,%’al =
||w||Xa% + ||w||Xa1b, for b >0, s € R, and ag, a1 € R\ {0} such that ag # a1.
Corollary 4.1. Let b > 0 and s € R. Let ag,...,a3 be nonzero real numbers such
that ag # a1, as # az. Then
b _ :
X = X% N X% = X% N X%,
Moreover, there exist constants ¢y = co(ao,-..,as,b), c1 = c1(ao,...,a3,0) > 0,

such that

co [[wllxeger < fJwllxezes < e flw]|xeqer.
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Remark 4.1. Suppose b >0 and s € R. If ¢ € H*(R) and ug € H**3%(R), then
o(t)ug(z) € X*P.
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