ON THE LOCAL WELL-POSEDNESS FOR SOME SYSTEMS OF COUPLED KDV EQUATIONS

Borys Alvarez-Samaniego ${ }^{1}$
Université Bordeaux I; IMB and CNRS UMR 5251
351 Cours de la Libération, 33405 Talence Cedex, France
Xavier Carvajal ${ }^{2}$
Department of Mathematics, IMECC-UNICAMP
C.P. 6065, CEP 13083-970, Campinas, SP, Brazil

Abstract

Using the theory developed by Kenig, Ponce, and Vega, we prove that the Hirota-Satsuma system is locally well-posed in Sobolev spaces $H^{s}(\mathbb{R}) \times$ $H^{s}(\mathbb{R})$ for $3 / 4<s \leq 1$. We introduce some Bourgain-type spaces $X_{s, b}^{a}$ for $a \neq 0, s, b \in \mathbb{R}$ to obtain local well-posedness for the Gear-Grimshaw system in $H^{s}(\mathbb{R}) \times H^{s}(\mathbb{R})$ for $s>-3 / 4$, by establishing new mixed-bilinear estimates involving the two Bourgain-type spaces $X_{s, b}^{-\alpha_{-}}$and $X_{s, b}^{-\alpha_{+}}$adapted to $\partial_{t}+\alpha_{-} \partial_{x}^{3}$ and $\partial_{t}+\alpha_{+} \partial_{x}^{3}$ respectively, where $\left|\alpha_{+}\right|=\left|\alpha_{-}\right| \neq 0$.

MSC: 35A07; 35Q53

Keywords: Hirota-Satsuma system; Gear-Grimshaw system; KdV equation

1. Introduction

In this paper we are concerned with two systems of coupled KdV equations, namely the Hirota-Satsuma system and the Gear-Grimshaw system.

First we consider local well-posedness (LWP) and ill-posedness of the initial value problem (IVP) for the following system:

$$
\left\{\begin{array}{l}
u_{t}-a\left(u_{x x x}+6 u u_{x}\right)=2 b v v_{x}, \tag{1.1}\\
v_{t}+v_{x x x}+3 u v_{x}=0, \\
u(0)=u_{0}, \quad v(0)=v_{0},
\end{array}\right.
$$

known as the Hirota-Satsuma system which was introduced in 10 to describe the interaction of two long waves with different dispersion relations. Here a, b are real constants, and u, v are real-valued functions of the two real variables x and t. System (1.1) is a set of coupled Korteweg-de Vries (abbreviated KdV henceforth) equations, and it is a generalization of the KdV equation (which is obtained when $v=0$). The Cauchy problem associated to (1.1), for the real and periodic case, was previously

[^0]studied by P. F. He [9, for $b>0,-1<a<0$, and considering Sobolev indices $s \geq 3$. It deserves remark that system (1.1) has the following conserved quantities:
\[

$$
\begin{align*}
V(u, v) & =\int_{-\infty}^{+\infty}\left(\frac{1+a}{2} u_{x}^{2}+b v_{x}^{2}-(1+a) u^{3}-b u v^{2}\right) d x \tag{1.2}\\
F(u, v) & =\int_{-\infty}^{+\infty}\left(u^{2}+\frac{2}{3} b v^{2}\right) d x \tag{1.3}
\end{align*}
$$
\]

Later, Feng [6] considered the initial value problem for the following system:

$$
\left\{\begin{array}{l}
u_{t}-a\left(u_{x x x}+6 u u_{x}\right)=2 b v v_{x} \tag{1.4}\\
v_{t}+v_{x x x}+c u v_{x}+d v v_{x}=0 \\
u(0)=u_{0}, \quad v(0)=v_{0}
\end{array}\right.
$$

which reduces to the Hirota-Satsuma system when $c=3$ and $d=0$, always assuming that $a \neq 0$. LWP of the IVP associated to system (1.4) was obtained, for initial data $\left(u_{0}, v_{0}\right) \in H^{s}(\mathbb{R}) \times H^{s}(\mathbb{R})$ for $s \geq 1$, with $a+1 \neq 0$ and $b c>0$. Moreover, global well-posedness (GWP) for system (1.4) was also proved (see [6]) in $H^{s}(\mathbb{R}) \times H^{s}(\mathbb{R})$ for $s \geq 1$, if $-1<a<0$ and $b c>0$.

The second problem we will consider here is related to the local well-posedness of the IVP for the Gear-Grimshaw system given by

$$
\left\{\begin{array}{l}
u_{t}+u_{x x x}+a_{3} v_{x x x}+u u_{x}+a_{1} v v_{x}+a_{2}(u v)_{x}=0 \tag{1.5}\\
b_{1} v_{t}+v_{x x x}+b_{2} a_{3} u_{x x x}+v v_{x}+b_{2} a_{2} u u_{x}+b_{2} a_{1}(u v)_{x}+r v_{x}=0 \\
u(0)=u_{0}, \quad v(0)=v_{0}
\end{array}\right.
$$

where $a_{1}, a_{2}, a_{3} \in \mathbb{R}, r \in \mathbb{R}$, and $b_{1}, b_{2}>0 ; u=u(x, t), v=v(x, t)$ are real-valued functions of the two real variables x and t. System (1.5) was derived in [7] (see also [3] for a very good explanation about the physical context in which this system arises) as a model to describe the strong interaction of two-dimensional, weakly nonlinear, long, internal gravity waves propagating on neighboring pycnoclines in a stratified fluid, where the two waves correspond to different modes. Bona et al. [3] proved GWP of the IVP associated to (1.5) with initial data belonging to $H^{s}(\mathbb{R}) \times H^{s}(\mathbb{R})$ for $s \geq 1$, assuming $r=0$ and $\left|a_{3}\right|<1 / \sqrt{b_{2}}$. Later, Ash et al. [1] considered GWP of (1.5) in $L^{2}(\mathbb{R}) \times L^{2}(\mathbb{R})$ supposing $r=0$ and $\left|a_{3}\right| \neq 1 / \sqrt{b_{2}}$ (see Section 3.17(2)). Further, Saut and Tzvetkov [17] considered GWP of system (3.1) for initial data $\left(u_{0}, v_{0}\right) \in L^{2}(\mathbb{R}) \times L^{2}(\mathbb{R})$, assuming that $r \neq 0$ and that the matrix $\left(a_{i j}\right)_{i, j \in\{1,2\}}$ has real distinct eigenvalues (see Section 3.1f(1)). Recently, Linares and Panthee [15], by using the bilinear estimate of Kenig, Ponce, and Vega [13], showed LWP for system (3.5) with initial data $\left(u_{0}, v_{0}\right) \in H^{s}(\mathbb{R}) \times H^{s}(\mathbb{R})$ for $s>-3 / 4$ (see Section 3.1f(2), and Remark 3.1fii.)). Solutions of (1.5) satisfy the following conservation laws:

$$
\begin{gathered}
\Phi_{1}(u)=\int_{-\infty}^{+\infty} u d x, \Phi_{2}(v)=\int_{-\infty}^{+\infty} v d x, \Phi_{3}(u, v)=\int_{-\infty}^{+\infty}\left(b_{2} u^{2}+b_{1} v^{2}\right) d x \\
\Phi_{4}(u, v)=\int_{-\infty}^{+\infty}\left(b_{2} u_{x}^{2}+v_{x}^{2}+2 b_{2} a_{3} u_{x} v_{x}-b_{2} \frac{u^{3}}{3}-b_{2} a_{2} u^{2} v-b_{2} a_{1} u v^{2}-\frac{v^{3}}{3}-r v^{2}\right) d x .
\end{gathered}
$$

We say that the IVP

$$
\left\{\begin{array}{l}
\partial_{t} \vec{u}(t)=F(t, \vec{u}(t)), \\
\vec{u}(0)=\vec{u}_{0}
\end{array}\right.
$$

is locally well-posed in X (Banach space) if there exist $T=T\left(\left\|\vec{u}_{0}\right\|_{X}\right)>0$ and a unique solution $\vec{u}(t)$ of the corresponding IVP such that
i.) $\vec{u} \in C([-T, T] ; X) \cap Y_{T}=X_{T}$;
ii.) the mapping data-solution $\vec{u}_{0} \mapsto \vec{u}(t)$, from $\left\{\vec{v}_{0} \in X ;\left\|\vec{v}_{0}\right\|_{X} \leq M\right\}$ into X_{T} is uniformly continuous for all $M>0$; i.e.

$$
\begin{aligned}
& \forall M>0, \forall \epsilon>0, \exists \delta=\delta(\epsilon, M)>0,\left\|\vec{u}_{0}-\vec{v}_{0}\right\|_{X}<\delta \text { then }\|\vec{u}-\vec{v}\|_{X_{T}}<\epsilon, \\
& \text { where }\left\|\vec{u}_{0}\right\|_{X} \leq M \text { and }\left\|\vec{v}_{0}\right\|_{X} \leq M
\end{aligned}
$$

We say that the IVP is globally well-posed in X if the same properties hold for all time $T>0$. If some hypothesis in the definition of local well-posedness fails, we say that the IVP is ill-posed.

This paper is organized as follows. In Section 2 we use Banach's fixed-point theorem in a suitable function space and the theory obtained by Kenig, Ponce, and Vega, to prove LWP to system (1.1), for any $a, b \in \mathbb{R}$, with initial data in $H^{s}(\mathbb{R}) \times H^{s}(\mathbb{R})$ for $3 / 4<s \leq 1$. We also show that system (1.1) with $a \neq 0$ is illposed in $H^{s}(\mathbb{R}) \times H^{s^{\prime}}(\mathbb{R})$ for $s \in\left[-1,-\frac{3}{4}\right)$, and $s^{\prime} \in \mathbb{R}$. We begin Section 3 with a few comments to scale changes carried out previously concerning the Gear-Grimshaw system. Thus, we introduce some Bourgain-type spaces $X_{s, b}^{a}$ for $a \neq 0$, and $s, b \in \mathbb{R}$. Moreover, we prove some new mixed-bilinear estimates involving the two Bourgaintype spaces $X_{s, b}^{1}$ and $X_{s, b}^{-1}$ corresponding to $\partial_{t}-\partial_{x}^{3}$ and $\partial_{t}+\partial_{x}^{3}$ respectively, to obtain LWP for the Gear-Grimshaw system (3.1) with $r=0, a_{12}=a_{21}=0$, $a_{11}=-a_{22} \neq 0$, and initial data in $H^{s}(\mathbb{R}) \times H^{s}(\mathbb{R})$ for $s>-3 / 4$ (see Theorem 3.2 below). We remark that these mixed-bilinear estimates (see Proposition 3.2) presented here are not an immediate consequence of the estimates proved by Kenig, Ponce, and Vega in 13 (see Remark 3.2 and Remark 3.4ii.)). Finally, we notice that system (1.1) is treated separately from system (1.5) because the nonlinearity in (1.1) has the non-divergence form, while the one in (1.5) has the divergence form; a possible difficulty with regard to the LWP of (1.1) in lower Sobolev indices could be related to the obtention of a suitable bilinear estimate for the nonlinear term in the second equation of (1.1).

Notation:

- $\hat{f}=\mathcal{F} f$: the Fourier transform of $f\left(\mathcal{F}^{-1}\right.$: the inverse of the Fourier transform), where $\hat{f}(\xi)=\frac{1}{\sqrt{2 \pi}} \int e^{-i \xi x} f(x) d x$ for $f \in L^{1}(\mathbb{R})$.
- $\|\cdot\|_{s},(\cdot, \cdot)_{s}$: the norm and the inner product respectively in $H^{s}(\mathbb{R})$ (Sobolev space of order s of L^{2} type $), s \in \mathbb{R} .\|f\|_{s}^{2} \equiv \int\left(1+|\xi|^{2}\right)^{s}|\hat{f}(\xi)|^{2} d \xi$. $\|\cdot\|=\|\cdot\|_{0}$: the $L^{2}(\mathbb{R})$ norm. (\cdot, \cdot) denotes the inner product on $L^{2}(\mathbb{R})$.
- $B(X, Y)$: set of bounded linear operators on X to Y. If $X=Y$ we write $B(X)$. $\|\cdot\|_{B(X, Y)}$: the operator norm in $B(X, Y)$.
- $L^{p}=\left\{f ; f\right.$ is measurable on $\left.\mathbb{R},\|f\|_{L^{p}}<\infty\right\}$, where $\|f\|_{L^{p}}=\left(\int|f(x)|^{p} d x\right)^{1 / p}$ if $1 \leq p<+\infty$, and $\|f\|_{L^{\infty}}=\operatorname{ess}_{\sup }^{x \in \mathbb{R}}| | f(x) \mid, f$ is an equivalence class.
- $C(I ; X)$: set of continuous functions on the interval I into the Banach space X.
- $\|f\|_{L_{T}^{q} L_{x}^{p}} \equiv\left(\int_{-T}^{T}\|f(\cdot, t)\|_{L^{p}}^{q} d t\right)^{1 / q}, \quad\|f\|_{L_{t}^{q} L_{x}^{p}} \equiv\|f\|_{L_{T}^{q} L_{x}^{p}}$ if $T=+\infty$.
- $\|f\|_{L_{x}^{p} L_{T}^{q}} \equiv\left\|\left(\int_{-T}^{T}|f(\cdot, t)|^{q} d t\right)^{1 / q}\right\|_{L^{p}}, \quad\|f\|_{L_{x}^{p} L_{t}^{q}} \equiv\|f\|_{L_{x}^{p} L_{T}^{q}}$ if $T=+\infty$.
- $\langle\xi\rangle \equiv 1+|\xi|$, for $\xi \in \mathbb{R}$.
- Let A, B be two $n \times n$ matrices. $A \sim B$ iff $\exists T \in G L(n), T^{-1} A T=B$.

2. On the Hirota-Satsuma System

2.1. Local Well-Posedness. Let us denote by

$$
\begin{equation*}
U_{a}(t)=e^{a t \partial_{x}^{3}}, \quad \widehat{U_{a}(t) \phi}(\xi)=e^{-i a t \xi^{3}} \hat{\phi}(\xi) \text { for } \phi \in H^{s}(\mathbb{R}) \tag{2.1}
\end{equation*}
$$

the group associated with the linear part of the first equation of system (1.1). We note that $U(t) \equiv U_{-1}(t)$ is the group associated with the linear part of the KdV equation. Next theorem proves LWP to system (1.1) in suitable Sobolev spaces.

Theorem 2.1. Let $a \neq 0$ and $3 / 4<s \leq 1$. Then for any $u_{0}, v_{0} \in H^{s}(\mathbb{R})$, there exists $T=T\left(\left\|u_{0}\right\|_{s},\left\|v_{0}\right\|_{s}\right)>0$ (with $T(\rho, \eta) \rightarrow \infty$ as $\rho \rightarrow 0, \eta \rightarrow 0$) and a unique solution (u, v) of problem (1.1) such that

$$
\begin{align*}
& u, v \in C\left([-T, T] ; H^{s}(\mathbb{R})\right) \tag{2.2}\\
& u_{x}, v_{x} \in L_{T}^{4} L_{x}^{\infty} \tag{2.3}\\
& D_{x}^{s} u_{x}, D_{x}^{s} v_{x} \in L_{x}^{\infty} L_{T}^{2} \tag{2.4}\\
& u, v \in L_{x}^{2} L_{T}^{\infty} \tag{2.5}\\
& u_{x}, v_{x} \in L_{x}^{\infty} L_{T}^{2} \tag{2.6}
\end{align*}
$$

For any $T^{\prime} \in(0, T)$ there exist neighborhoods V of u_{0} in $H^{s}(\mathbb{R})$ and V^{\prime} of v_{0} in $H^{s}(\mathbb{R})$ such that the map $\left(\tilde{u}_{0}, \tilde{v}_{0}\right) \mapsto(\tilde{u}, \tilde{v})$ from $V \times V^{\prime}$ into the class defined by (2.2)-(2.6) with T^{\prime} instead of T is Lipschitz.

If $u_{0}, v_{0} \in H^{r}(\mathbb{R})$ with $r>s$, then the above results hold with r instead of s in the same time interval.
Moreover, from the conservation laws (1.2) and (1.3) we can choose $T=+\infty$ at least for $s=1$, for $a+1>0$ and $b>0$.

Proof. Let $\frac{3}{4}<s \leq 1$. Given $r \in \mathbb{R}$ and $T>0$, let us define

$$
\begin{align*}
\Lambda_{r}^{T}(u) \equiv & \max _{[-T, T]}\|u(t)\|_{r}+\left\|u_{x}\right\|_{L_{T}^{4} L_{x}^{\infty}}+\left\|D_{x}^{r} u_{x}\right\|_{L_{x}^{\infty} L_{T}^{2}} \\
& +(1+T)^{-1 / 2}\|u\|_{L_{x}^{2} L_{T}^{\infty}}+\left\|u_{x}\right\|_{L_{x}^{\infty} L_{T}^{2}} \tag{2.7}
\end{align*}
$$

Denote $\||(u, v)|\| \equiv \Lambda_{s}^{T}(u)+\Lambda_{s}^{T}(v)$. We consider the space

$$
X^{T}=\left\{(u, v) \in C\left([-T, T] ; H^{s}(\mathbb{R})\right) \times C\left([-T, T] ; H^{s}(\mathbb{R})\right) ;\|\mid(u, v)\|<\infty\right\}
$$

and $X_{M}^{T}=\left\{(u, v) \in X^{T} ;\| \|(u, v)\| \| \leq M\right\}$. Let us write the integral equations associated to problem (1.1)

$$
\left\{\begin{array}{l}
\Phi_{1}(u, v)(t)=U_{a}(t) u_{0}+\int_{0}^{t} U_{a}\left(t-t^{\prime}\right)\left(6 a u u_{x}+2 b v v_{x}\right)\left(t^{\prime}\right) d t^{\prime} \\
\Phi_{2}(u, v)(t)=U(t) v_{0}-3 \int_{0}^{t} U\left(t-t^{\prime}\right)\left(u v_{x}\right)\left(t^{\prime}\right) d t^{\prime}
\end{array}\right.
$$

We will prove that $\Phi: X_{M}^{T} \mapsto X_{M}^{T}$, where $\Phi(u, v) \equiv\left(\Phi_{1}(u, v), \Phi_{2}(u, v)\right)$, is a contraction map for suitably chosen M and T. We have the following inequalities:

$$
\begin{align*}
\left\|U_{a}(t) u_{0}\right\|_{r} & \leq c\left\|u_{0}\right\|_{r} \quad \text { for } r \in \mathbb{R} \tag{2.8}\\
\left\|D_{x}^{r} \partial_{x} U_{a}(t) u_{0}\right\|_{L_{x}^{\infty} L_{T}^{2}} & \leq \frac{c}{|a|^{1 / 2}}\left\|D_{x}^{r} u_{0}\right\| \quad \text { for } r \in \mathbb{R} \tag{2.9}\\
\left\|\partial_{x} U_{a}(t) u_{0}\right\|_{L_{T}^{4} L_{x}^{\infty}} & \leq \frac{c}{|a|^{1 / 4}}\left\|u_{0}\right\|_{r} \quad \text { for } r \geq 3 / 4 \tag{2.10}\\
\left\|U_{a}(t) u_{0}\right\|_{L_{x}^{2} L_{T}^{\infty}} & \leq c_{(a, r)}(1+T)^{1 / 2}\left\|u_{0}\right\|_{r} \quad \text { for } r>3 / 4 \tag{2.11}
\end{align*}
$$

Expression (2.8) is a group property. Inequality (2.9) is a consequence of Theorem 4.1 in [11. Expression (2.10) follows from Theorem 2.1 in [11]. Estimate (2.11) is obtained by using Proposition 2.4 in (14). It follows from (2.8)-(2.11) that $\Lambda_{s}^{T}\left(U_{a}(t) u_{0}\right) \leq c\left\|u_{0}\right\|_{s}$. Let $(u, v) \in X_{M}^{T}$. Then

$$
\begin{align*}
\Lambda_{s}^{T}\left(\Phi_{1}(u, v)\right) \leq & c\left\|u_{0}\right\|_{s}+c \int_{0}^{T}\left\|\left(u u_{x}\right)(\tau)\right\| d \tau+c \int_{0}^{T}\left\|D_{x}^{s}\left(u u_{x}\right)(\tau)\right\| d \tau \\
& +c \int_{0}^{T}\left\|\left(v v_{x}\right)(\tau)\right\| d \tau+c \int_{0}^{T}\left\|D_{x}^{s}\left(v v_{x}\right)(\tau)\right\| d \tau \tag{2.12}
\end{align*}
$$

Choose $M \equiv 4 c\left(\left\|u_{0}\right\|_{s}+\left\|v_{0}\right\|_{s}\right)$. It follows that

$$
\begin{equation*}
\left\|u u_{x}\right\|_{L_{T}^{2} L_{x}^{2}} \leq\left\|u_{x}\right\|_{L_{x}^{\infty} L_{T}^{2}}\|u\|_{L_{x}^{2} L_{T}^{\infty}} \leq M^{2}(1+T)^{1 / 2} \tag{2.13}
\end{equation*}
$$

Now, by using Theorem A. 12 in [12] and Hölder's inequality, it follows that

$$
\begin{align*}
\left\|D_{x}^{s}\left(u u_{x}\right)\right\|_{L_{T}^{2} L_{x}^{2}} & \leq c\| \| u_{x}\left\|_{L_{x}^{\infty}}\right\| D_{x}^{s} u\left\|_{L_{x}^{2}}\right\|_{L_{T}^{2}}+\|u\|_{L_{x}^{2} L_{T}^{\infty}}\left\|D_{x}^{s} u_{x}\right\|_{L_{x}^{\infty} L_{T}^{2}} \\
& \leq c T^{1 / 4}\left\|D_{x}^{s} u\right\|_{L_{T}^{\infty} L_{x}^{2}}\left\|u_{x}\right\|_{L_{T}^{4} L_{x}^{\infty}}+M^{2}(1+T)^{1 / 2} \\
& \leq c M^{2}\left(T^{1 / 4}+(1+T)^{1 / 2}\right) . \tag{2.14}
\end{align*}
$$

By replacing (2.13) and (2.14) (and similar estimates for v) into (2.12) we obtain

$$
\begin{equation*}
\Lambda_{s}^{T}\left(\Phi_{1}(u, v)\right) \leq \frac{M}{4}+c M^{2} T^{1 / 2}\left(T^{1 / 4}+(1+T)^{1 / 2}\right) \tag{2.15}
\end{equation*}
$$

By choosing $T>0$ small enough such that $T^{1 / 2}\left(T^{1 / 4}+(1+T)^{1 / 2}\right) \leq \frac{1}{4 c M}$, it follows that $\Lambda_{s}^{T}\left(\Phi_{1}(u, v)\right) \leq \frac{M}{2}$. Similarly we have that $\Lambda_{s}^{T}\left(\Phi_{2}(u, v)\right) \leq \frac{M}{2}$. Then, for $M>0$ and $T>0$ chosen as above, Φ is a well-defined map from X_{M}^{T} to itself. Analogously, we prove that Φ is a contraction map. The rest of the proof is similar to the proof of Theorem 2.1 in [12].

Theorem 2.2. Let $a=0$ and $3 / 4<s \leq 1$. Then for any $u_{0}, v_{0} \in H^{s}(\mathbb{R})$, there exists $T=T\left(\left\|u_{0}\right\|_{s},\left\|v_{0}\right\|_{s}\right)>0$ (with $T(\rho, \eta) \rightarrow \infty$ as $\rho \rightarrow 0, \eta \rightarrow 0$) and a unique solution (u, v) of problem (1.1) such that

$$
\begin{align*}
& u, v \in C\left([-T, T] ; H^{s}(\mathbb{R})\right) \tag{2.16}\\
& v_{x} \in L_{T}^{4} L_{x}^{\infty} \tag{2.17}\\
& D_{x}^{s} v_{x} \in L_{x}^{\infty} L_{T}^{2} \tag{2.18}\\
& u, v \in L_{x}^{2} L_{T}^{\infty} \tag{2.19}\\
& v_{x} \in L_{x}^{\infty} L_{T}^{2} \tag{2.20}
\end{align*}
$$

For any $T^{\prime} \in(0, T)$ there exist neighborhoods V of u_{0} in $H^{s}(\mathbb{R})$ and V^{\prime} of v_{0} in $H^{s}(\mathbb{R})$ such that the map $\left(\tilde{u}_{0}, \tilde{v}_{0}\right) \mapsto(\tilde{u}, \tilde{v})$ from $V \times V^{\prime}$ into the class defined by (2.16)- (2.20) with T^{\prime} instead of T is Lipschitz.

If $u_{0}, v_{0} \in H^{r}(\mathbb{R})$ with $r>s$, then the above results hold with r instead of s in the same time interval.
If $s=1$ and $b>0$, then we can choose $T=+\infty$.
Proof. Let $3 / 4<s \leq 1$. Let $\Lambda_{s}^{T}(\cdot)$ be the norm defined by (2.7). Denote by

$$
\tilde{\Lambda}_{s}^{T}(u) \equiv \max _{[-T, T]}\|u(t)\|_{s}+\|u\|_{L_{x}^{2} L_{T}^{\infty}}
$$

and $\|\mid(u, v)\| \| \tilde{\Lambda}_{s}^{T}(u)+\Lambda_{s}^{T}(v)$. Let X^{T} and X_{M}^{T} be defined as in the proof of Theorem 2.1. Let us now consider $\Phi(u, v) \equiv\left(\Phi_{1}(u, v), \Phi_{2}(u, v)\right)$, where

$$
\left\{\begin{array}{l}
\Phi_{1}(u, v)(t)=u_{0}+2 b \int_{0}^{t}\left(v v_{x}\right)\left(t^{\prime}\right) d t^{\prime} \\
\Phi_{2}(u, v)(t)=U(t) v_{0}-3 \int_{0}^{t} U\left(t-t^{\prime}\right)\left(u v_{x}\right)\left(t^{\prime}\right) d t^{\prime}
\end{array}\right.
$$

Let $(u, v) \in X_{M}^{T}$. Then

$$
\Lambda_{s}^{T}\left(\Phi_{2}(u, v)\right) \leq c\left\|v_{0}\right\|_{s}+c \int_{0}^{T}\left\|\left(u v_{x}\right)(\tau)\right\| d \tau+c \int_{0}^{T}\left\|D_{x}^{s}\left(u v_{x}\right)(\tau)\right\| d \tau
$$

We see that

$$
\left\|u v_{x}\right\|_{L_{T}^{2} L_{x}^{2}} \leq\left\|v_{x}\right\|_{L_{x}^{\infty} L_{T}^{2}}\|u\|_{L_{x}^{2} L_{T}^{\infty}} \leq M^{2} .
$$

Now, using Theorem A. 12 in [12] and Hölder's inequality, we get

$$
\begin{aligned}
\left\|D_{x}^{s}\left(u v_{x}\right)\right\|_{L_{T}^{2} L_{x}^{2}} & \leq c\| \| v_{x}\left\|_{L_{x}^{\infty}}\right\| D_{x}^{s} u\left\|_{L_{x}^{2}}\right\|_{L_{T}^{2}}+\|u\|_{L_{x}^{2} L_{T}^{\infty}}\left\|D_{x}^{s} v_{x}\right\|_{L_{x}^{\infty} L_{T}^{2}} \\
& \leq c M^{2}\left(1+T^{1 / 4}\right)
\end{aligned}
$$

By choosing $M \equiv 6 c\left(\left\|u_{0}\right\|_{s}+\left\|v_{0}\right\|_{s}\right)$ and $T>0$ such that $T^{1 / 2}\left(T^{1 / 4}+(1+T)^{1 / 2}\right) \leq$ $\frac{1}{6 c M}$, we obtain $\Lambda_{s}^{T}\left(\Phi_{2}(u, v)\right) \leq \frac{M}{3}$ and $\max _{[-T, T]}\left\|\Phi_{1}(u, v)(t)\right\|_{s} \leq \frac{M}{3}$. Moreover,

$$
\begin{aligned}
\left\|\Phi_{1}(u, v)\right\|_{L_{x}^{2} L_{T}^{\infty}} & \leq\left\|u_{0}\right\|+2 b\left\|\int_{0}^{T}\left|\left(v v_{x}\right)(\tau)\right| d \tau\right\|_{L_{x}^{2}} \leq\left\|u_{0}\right\|+c T^{1 / 2}\left\|v v_{x}\right\|_{L_{T}^{2} L_{x}^{2}} \\
& \leq \frac{M}{6}+c T^{1 / 2} M^{2}(1+T)^{1 / 2} \leq \frac{M}{3}
\end{aligned}
$$

Then $\||\Phi(u, v)|\| \leq M$. The rest of the proof is as for Theorem 2.1.

Remark 2.1. In [16], Sakovich considered the following system:

$$
\left\{\begin{array}{l}
u_{x x x}+a u u_{x}+b v u_{x}+c u v_{x}+d v v_{x}+m u_{t}+n v_{t}=0, \tag{2.21}\\
v_{x x x}+e u u_{x}+f v u_{x}+g u v_{x}+h v v_{x}+p u_{t}+q v_{t}=0, \\
u(0)=u_{0}, \quad v(0)=v_{0}
\end{array}\right.
$$

where $m q \neq n p$. This system can be written as

$$
\begin{equation*}
\binom{u_{x x x}}{v_{x x x}}+A_{0}\binom{u u_{x}}{v u_{x}}+A_{1}\binom{u v_{x}}{v v_{x}}+A_{2}\binom{u_{t}}{v_{t}}=0 \tag{2.22}
\end{equation*}
$$

where

$$
A_{0}=\left(\begin{array}{ll}
a & b \\
e & f
\end{array}\right), A_{1}=\left(\begin{array}{ll}
c & d \\
g & h
\end{array}\right), A_{2}=\left(\begin{array}{cc}
m & n \\
p & q
\end{array}\right) .
$$

Since A_{2} is nonsingular, multiplying (2.22) by A_{2}^{-1}, we get

$$
\binom{u_{t}}{v_{t}}+A_{2}^{-1}\binom{u_{x x x}}{v_{x x x}}+A_{2}^{-1} A_{0}\binom{u u_{x}}{v u_{x}}+A_{2}^{-1} A_{1}\binom{u v_{x}}{v v_{x}}=0 .
$$

If $P \in G L(2)$ is such that $P^{-1} A_{2}^{-1} P=\operatorname{diag}\left(a_{0}, a_{1}\right)$, where a_{0} and a_{1} are the eigenvalues of A_{2}^{-1}, by making $U=(u, v)^{t}=P V$, we obtain a new system of Hirota-Satsuma type. Therefore, similar results to Theorems 2.1 and 2.2 are also valid for this new system.
2.2. Ill-Posedness to the Hirota-Satsuma System. Let us remark that if $u(x, t)$ and $v(x, t)$ are solutions of (1.1), then $\tilde{u}(x, t)=\lambda^{2} u\left(\lambda x, \lambda^{3} t\right)$ and $\tilde{v}(x, t)=\lambda^{2} v\left(\lambda x, \lambda^{3} t\right)$ are also solutions of (1.1). This scaling argument suggests that the Cauchy problem for the Hirota-Satsuma system is locally well-posed in $H^{s}(\mathbb{R}) \times H^{s^{\prime}}(\mathbb{R})$ for $s, s^{\prime}>-\frac{3}{2}$. It is not difficult to see that the IVP associated to the KdV equation

$$
\left\{\begin{array}{l}
w_{t}+w_{x x x}+6 w w_{x}=0 \\
w(x, 0)=w_{0}(x)
\end{array}\right.
$$

is equivalent to the IVP

$$
\left\{\begin{array}{l}
u_{t}-a\left(u_{x x x}+6 u u_{x}\right)=0 \tag{2.23}\\
u(x, 0)=u_{0}(x)=w_{0}(-x),
\end{array}\right.
$$

through the transformation $u(x, t)=w(-x, a t)$, for $a \neq 0$. Note that if u is a solution of (2.23), then $(u, 0)$ is a solution of problem (1.1) with initial data $\left(u_{0}, 0\right)$. Then, it follows from the ill-posedness result for the KdV equation (see [5]) that the mapping data-solution associated to the IVP (1.1) with $a \neq 0$ is not uniformly continuous in $H^{s}(\mathbb{R}) \times H^{s^{\prime}}(\mathbb{R})$, for $s \in\left[-1,-\frac{3}{4}\right)$, and $s^{\prime} \in \mathbb{R}$.

3. On the Gear-Grimshaw System

3.1. Initial Comments. (1) We consider the Gear-Grimshaw system given by

$$
\left\{\begin{array}{l}
u_{t}+a_{11} u_{x x x}+a_{12} v_{x x x}+b_{1}(u v)_{x}+b_{2} u u_{x}+b_{3} v v_{x}=0 \tag{3.1}\\
v_{t}+a_{21} u_{x x x}+a_{22} v_{x x x}+r v_{x}+b_{4}(u v)_{x}+b_{5} u u_{x}+b_{6} v v_{x}=0 \\
u(0)=u_{0}, \quad v(0)=v_{0}
\end{array}\right.
$$

Suppose $r \neq 0$. Let A, B and $C(U)$ be the matrices (see [17]) defined by

$$
A=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right), \quad B=\left(\begin{array}{cc}
0 & 0 \\
0 & r
\end{array}\right), \quad C(U)=\left(\begin{array}{ll}
b_{2} u+b_{1} v & b_{1} u+b_{3} v \\
b_{5} u+b_{4} v & b_{4} u+b_{6} v
\end{array}\right)
$$

where $U=(u, v)^{t}$. Let $T \in G L(2)$ such that $T^{-1} A T=\operatorname{diag}\left(\alpha_{+}, \alpha_{-}\right)$, where α_{+} and α_{-}are the eigenvalues of A, and $\alpha_{+}, \alpha_{-} \in \mathbb{R}$. By making $U=T V$, we obtain

$$
\left\{\begin{array}{l}
V_{t}(t, x)+\operatorname{diag}\left(\alpha_{+}, \alpha_{-}\right) V_{x x x}(t, x)+B_{1} V_{x}(t, x)+C_{1}(V)(t, x) V_{x}(t, x)=0 \tag{3.2}\\
V(0)=T^{-1} U_{0}
\end{array}\right.
$$

where $B_{1}=T^{-1} B T=\left(b_{i j}\right)_{i, j \in\{1,2\}}, C_{1}(V)=T^{-1} C(T V) T$ and $U_{0}=U(0)$. Let $V=\left(v_{1}, v_{2}\right)^{t}$. If we make the scale change (supposing $\left.\alpha_{+} \neq 0, \alpha_{-} \neq 0\right)$

$$
v_{1}(t, x)=w_{1}\left(t, \frac{x}{\alpha_{+}^{1 / 3}}\right), \quad v_{2}(t, x)=w_{2}\left(t, \frac{x}{\alpha_{-}^{1 / 3}}\right)
$$

then $W=\left(w_{1}, w_{2}\right)^{t}$ satisfies the following system:

$$
\left\{\begin{array}{l}
\partial_{1} w_{1}\left(t, \frac{x}{\alpha_{+}^{1 / 3}}\right)+\partial_{2}^{3} w_{1}\left(t, \frac{x}{\alpha_{+}^{1 / 3}}\right)+\frac{b_{11}}{\alpha_{+}^{1 / 3}} \partial_{2} w_{1}\left(t, \frac{x}{\alpha_{+}^{1 / 3}}\right)+\frac{b_{12}}{\alpha_{-}^{1 / 3}} \partial_{2} w_{2}\left(t, \frac{x}{\alpha_{-}^{1 / 3}}\right)+\ldots=0 \\
\partial_{1} w_{2}\left(t, \frac{x}{\alpha_{-}^{1 / 3}}\right)+\partial_{2}^{3} w_{2}\left(t, \frac{x}{\alpha_{-}^{1 / 3}}\right)+\frac{b_{21}}{\alpha_{+}^{1 / 3}} \partial_{2} w_{1}\left(t, \frac{x}{\alpha_{+}^{1 / 3}}\right)+\frac{b_{22}}{\alpha_{-}^{1 / 3}} \partial_{2} w_{2}\left(t, \frac{x}{\alpha_{-}^{1 / 3}}\right)+\ldots=0
\end{array}\right.
$$

where ∂_{i}, for $i=1,2$ denotes the partial derivative with respect to the i-th variable. It should be noted that $\partial_{2} w_{1}$ is evaluated at the point $\left(t, \frac{x}{\alpha_{+}^{1 / 3}}\right)$ and $\partial_{2} w_{2}$ is evaluated at the point $\left(t, \frac{x}{\alpha_{-}^{1 / 3}}\right)$. Take $b_{1}=\ldots=b_{6}=0$ in (3.1). If $\alpha_{+} \neq \alpha_{-}$, it follows that we should take care in any of the following cases:

- $b_{12} \neq 0$ and $\partial_{2} w_{2}\left(t, \frac{x}{\alpha_{+}^{1 / 3}}\right) \neq \partial_{2} w_{2}\left(t, \frac{x}{\alpha_{-}^{1 / 3}}\right)$,
- $b_{21} \neq 0$ and $\partial_{2} w_{1}\left(t, \frac{x}{\alpha_{+}^{1 / 3}}\right) \neq \partial_{2} w_{1}\left(t, \frac{x}{\alpha_{-}^{1 / 3}}\right)$.
(2) We now consider the following system $(C(U) \not \equiv 0$ and $r=0$ in (3.1)):

$$
\left\{\begin{array}{l}
u_{t}+u_{x x x}+a_{3} v_{x x x}+u u_{x}+a_{1} v v_{x}+a_{2}(u v)_{x}=0 \tag{3.3}\\
b_{1} v_{t}+v_{x x x}+b_{2} a_{3} u_{x x x}+v v_{x}+b_{2} a_{2} u u_{x}+b_{2} a_{1}(u v)_{x}=0 \\
u(0)=u_{0}, \quad v(0)=v_{0}
\end{array}\right.
$$

where $a_{1}, a_{2}, a_{3}, b_{1}, b_{2}$ are real constants, with $b_{1}, b_{2}>0, a_{3} \neq 0$, and $a_{3}^{2} b_{2} \neq 1$. We define (see [1] and [15]): $\lambda=\left\{\left(1-\frac{1}{b_{1}}\right)^{2}+\frac{4 b_{2} a_{3}^{2}}{b_{1}}\right\}^{1 / 2}$ and $\alpha_{ \pm}=\frac{1}{2}\left(1+\frac{1}{b_{1}} \pm \lambda\right)$. Consider

$$
\left\{\begin{array}{l}
\tilde{u}(t, x)=\left(\frac{1-\alpha_{-}}{\lambda}\right) u\left(t, \alpha_{+}^{1 / 3} x\right)+\frac{a_{3}}{\lambda} v\left(t, \alpha_{+}^{1 / 3} x\right), \\
\tilde{v}(t, x)=\left(\frac{\alpha_{+}-1}{\lambda}\right) u\left(t, \alpha_{-}^{1 / 3} x\right)-\frac{a_{3}}{\lambda} v\left(t, \alpha_{-}^{1 / 3} x\right),
\end{array}\right.
$$

or equivalently

$$
\left\{\begin{align*}
u(t, x) & =\tilde{u}\left(t, \frac{x}{\alpha_{-}^{1 / 3}}\right)+\tilde{v}\left(t, \frac{x}{\alpha_{-}^{1 / 3}}\right) \tag{3.4}\\
v(t, x) & =\left(\frac{\alpha_{+}-1}{a_{3}}\right) \tilde{u}\left(t, \frac{x}{\alpha_{+}^{1 / 3}}\right)-\left(\frac{1-\alpha_{-}}{a_{3}}\right) \tilde{v}\left(t, \frac{x}{\alpha_{-}^{1 / 3}}\right) .
\end{align*}\right.
$$

We note that this change of variable is equivalent to the one performed in item (1) for W. Take $b_{1}=b_{2}=1, a_{1}=a_{2}=0$ and $a_{3}=2$ in system (3.3). Then $\alpha_{+}=3$,
$\alpha_{-}=-1$ and $\lambda=4$. By using (3.4), it follows that
$\left\{\begin{array}{l}\partial_{1} \tilde{u}\left(t, \frac{x}{3^{1 / 3}}\right)+\partial_{1} \tilde{v}(t,-x)+\partial_{2}^{3} \tilde{u}\left(t, \frac{x}{3^{1 / 3}}\right)+\partial_{2}^{3} \tilde{v}(t,-x)+\frac{1}{3^{1 / 3}} \tilde{u}\left(t, \frac{x}{3^{1 / 3}}\right) \partial_{2} \tilde{u}\left(t, \frac{x}{3^{1 / 3}}\right) \\ -\tilde{u}\left(t, \frac{x}{3^{1 / 3}}\right) \partial_{2} \tilde{v}(t,-x)+\frac{1}{3^{1 / 3}} \partial_{2} \tilde{u}\left(t, \frac{x}{3^{1 / 3}}\right) \tilde{v}(t,-x)-\tilde{v}(t,-x) \partial_{2} \tilde{v}(t,-x)=0, \\ \partial_{1} \tilde{u}\left(t, \frac{x}{3^{1 / 3}}\right)-\partial_{1} \tilde{v}(t,-x)+\partial_{2}^{3} \tilde{u}\left(t, \frac{x}{3^{1 / 3}}\right)-\partial_{2}^{3} \tilde{v}(t,-x)+\frac{1}{3^{1 / 3}} \tilde{u}\left(t, \frac{x}{3^{1 / 3}}\right) \partial_{2} \tilde{u}\left(t, \frac{x}{3^{1 / 3}}\right) \\ +\tilde{u}\left(t, \frac{x}{3^{1 / 3}}\right) \partial_{2} \tilde{v}(t,-x)-\frac{1}{3^{1 / 3}} \partial_{2} \tilde{u}\left(t, \frac{x}{3^{1 / 3}}\right) \tilde{v}(t,-x)-\tilde{v}(t,-x) \partial_{2} \tilde{v}(t,-x)=0 .\end{array}\right.$
Then
$\left\{\begin{array}{l}\partial_{1} \tilde{u}\left(t, \frac{x}{3^{1 / 3}}\right)+\partial_{2}^{3} \tilde{u}\left(t, \frac{x}{3^{1 / 3}}\right)+\frac{1}{3^{1 / 3}} \tilde{u}\left(t, \frac{x}{3^{1 / 3}}\right) \partial_{2} \tilde{u}\left(t, \frac{x}{3^{1 / 3}}\right)-\tilde{v}(t,-x) \partial_{2} \tilde{v}(t,-x)=0, \\ \partial_{1} \tilde{v}(t,-x)+\partial_{2}^{3} \tilde{v}(t,-x)-\tilde{u}\left(t, \frac{x}{3^{1 / 3}}\right) \partial_{2} \tilde{v}(t,-x)+\frac{1}{3^{1 / 3}} \partial_{2} \tilde{u}\left(t, \frac{x}{3^{1 / 3}}\right) \tilde{v}(t,-x)=0, \\ \tilde{u}(0, x)=\frac{1}{2} u_{0}\left(3^{1 / 3} x\right)+\frac{1}{2} v_{0}\left(3^{1 / 3} x\right), \\ \tilde{v}(0, x)=\frac{1}{2} u_{0}(-x)-\frac{1}{2} v_{0}(-x) .\end{array}\right.$
Notice that $-\tilde{u}\left(t, \frac{x}{3^{1 / 3}}\right) \partial_{2} \tilde{v}(t,-x)+\frac{1}{3^{1 / 3}} \partial_{2} \tilde{u}\left(t, \frac{x}{3^{1 / 3}}\right) \tilde{v}(t,-x)=\partial_{x}\left(\tilde{u}\left(t, \frac{x}{3^{1 / 3}}\right) \tilde{v}(t,-x)\right)$, where $\partial_{x} \neq \partial_{2}$. It follows that, in general, system (3.3) cannot be written as

$$
\left\{\begin{array}{l}
\tilde{u}_{t}+\tilde{u}_{x x x}+a \tilde{u} \tilde{u}_{x}+b \tilde{v} \tilde{v}_{x}+c(\tilde{u} \tilde{v})_{x}=0 \tag{3.5}\\
\tilde{v}_{t}+\tilde{v}_{x x x}+\tilde{a} \tilde{u} \tilde{u}_{x}+\tilde{b} \tilde{v} \tilde{v}_{x}+\tilde{c}(\tilde{u} \tilde{v})_{x}=0 \\
\tilde{u}(0, x)=\left(\frac{1-\alpha_{-}}{\lambda}\right) u_{0}\left(\alpha_{+}^{1 / 3} x\right)+\frac{a_{3}}{\lambda} v_{0}\left(\alpha_{+}^{1 / 3} x\right) \\
\tilde{v}(0, x)=\left(\frac{\alpha_{+}-1}{\lambda}\right) u_{0}\left(\alpha_{-}^{1 / 3} x\right)-\frac{a_{3}}{\lambda} v_{0}\left(\alpha_{-}^{1 / 3} x\right)
\end{array}\right.
$$

where a, b, c and $\tilde{a}, \tilde{b}, \tilde{c}$ are constants.
Remark 3.1. i.) To prove LWP to a system like (3.1) with $r=0$, we can work with an equivalent system like (3.2) (see Remark (3.6). In this case and if $\alpha_{+}, \alpha_{-} \in \mathbb{R} \backslash$ $\{0\}$, we can consider the two groups $U_{-\alpha_{+}}(t)=e^{-\left(\alpha_{+}\right) t \partial_{x}^{3}}$ and $U_{-\alpha_{-}}(t)=e^{-\left(\alpha_{-}\right) t \partial_{x}^{3}}$ associated to the linear part of system (3.2) (see Theorem 3.1 and Corollary 3.1 for the case when $\left.\left|\alpha_{+}\right|=\left|\alpha_{-}\right|\right)$.
ii.) The LWP result obtained in [15] really corresponds to system (3.5). To prove LWP for the more general case corresponding to system (3.1) with $r=0$, we could try to obtain some suitable bilinear estimates (see Propositions 3.1 and 3.2, and Remark 3.4-i.) for the case when $\left.\left|\alpha_{+}\right|=\left|\alpha_{-}\right| \neq 0\right)$.
3.2. Definiton of $X_{s, b}^{a}$-Spaces. Let $a \neq 0$. For $s, b \in \mathbb{R}, X_{s, b}^{a}$ is used to denote the completion of the Schwartz space $\mathcal{S}\left(\mathbb{R}^{2}\right)$ with respect to the norm

$$
\begin{equation*}
\|F\|_{X_{s, b}^{a}} \equiv\left(\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty}\left\langle\tau+a \xi^{3}\right\rangle^{2 b}\langle\xi\rangle^{2 s}|\widehat{F}(\xi, \tau)|^{2} d \xi d \tau\right)^{1 / 2} \tag{3.6}
\end{equation*}
$$

where $\widehat{F}(\xi, \tau)=(2 \pi)^{-1} \int_{\mathbb{R}^{2}} e^{-i(x \xi+t \tau)} F(x, t) d x d t$. It follows that $X_{s, b}^{-1}$ coincides with the usual Bourgain space $X_{s, b}$ for the KdV equation (see [4]).

Lemma 3.1. Let $b>1 / 2, s \geq-3 / 2$, and $a_{0}, a_{1} \in \mathbb{R} \backslash\{0\}$ such that $a_{0} \neq a_{1}$. Then

$$
X_{s, b}^{a_{0}} \neq X_{s, b}^{a_{1}} .
$$

Proof. First, we suppose that $a_{0} \cdot a_{1}<0$. We may assume that $a_{0}>0$.
Case: $s>1 / 2-b$. Consider $v \in X_{s, b}^{a_{1}} \cap L^{2}\left(\mathbb{R}^{2}\right)$ such that

$$
|\hat{v}(\xi, \tau)|^{2}=\frac{1}{\langle\xi\rangle^{2 s+2 b}\left\langle\tau+a_{1} \xi^{3}\right\rangle^{4 b}}
$$

Therefore

$$
\|v\|_{X_{s, b}^{a_{0}}}^{2} \geq c\left(b, a_{0}\right) \int_{\left(\mathbb{R}^{+}\right)^{2}} \frac{\xi^{6 b} d \xi d \tau}{\langle\xi\rangle^{2 b}\left\langle\tau+a_{1} \xi^{3}\right\rangle^{4 b}}=\infty
$$

Case: $-3 / 2 \leq s \leq 0$. Consider $u \in X_{s, b}^{a_{1}} \cap L^{2}\left(\mathbb{R}^{2}\right)$ such that

$$
|\hat{u}(\xi, \tau)|^{2}=\frac{1}{\langle\xi\rangle^{d}\left\langle\tau+a_{1} \xi^{3}\right\rangle^{4 b}}, \quad d \in(1,6 b-2)
$$

Therefore

$$
\|u\|_{X_{s, b}^{a_{0}}}^{2} \geq c\left(b, a_{0}\right) \int_{\left(\mathbb{R}^{+}\right)^{2}} \frac{\xi^{6 b}\langle\xi\rangle^{2 s-d} d \xi d \tau}{\left\langle\tau+a_{1} \xi^{3}\right\rangle^{4 b}}=\infty
$$

The case $a_{0} \cdot a_{1}>0$ follows from the case $a_{0} \cdot a_{1}<0$ and from Lemma 4.1.

Remark 3.2. Lemma 3.1 implies that the two norms $\|\cdot\|_{X_{s, b}^{1}}$ and $\|\cdot\|_{X_{s, b}^{-1}}$ are not equivalent for $s>-3 / 4$ and $b>1 / 2$. Then, it follows that Proposition 3.2 below is not an immediate consequence of Proposition 3.1.

3.3. Bilinear Estimates in $X_{s, b}^{a}$-Spaces.

Proposition 3.1. Given $s>-\frac{3}{4}$ and $a \neq 0$, there exist $b^{\prime} \in\left(-\frac{1}{2}, 0\right)$ and $\epsilon_{s}>0$ such that for any $b \in\left(\frac{1}{2}, b^{\prime}+1\right]$ with $b^{\prime}+1-b \leq \epsilon_{s}$

$$
\begin{equation*}
\left\|(u v)_{x}\right\|_{X_{s, b^{\prime}}^{a}} \leq c_{\left(a, s, b, b^{\prime}\right)}\|u\|_{X_{s, b}^{a}}\|v\|_{X_{s, b}^{a}} \tag{3.7}
\end{equation*}
$$

Proof. The result follows from Corollary 2.7 in [13], and from the fact that if $g(x, t) \equiv f\left(x, \frac{t}{-a}\right)$ then $\widehat{g}(\xi, \tau)=|a| \widehat{f}(\xi,-a \tau)$.

The following lemma contains elementary calculus inequalities.
Lemma 3.2. If $b>1 / 2$, then there exists $c_{b}>0$ such that

$$
\begin{equation*}
\int \frac{d x}{\left(1+|a|\left|x^{2}-\eta^{2}\right|\right)^{2 b}} \leq \frac{c_{b}}{|a||\eta|} \tag{3.8}
\end{equation*}
$$

If $0 \leq \alpha \leq \beta$, and $\beta>1$, then there exists $c_{(\alpha, \beta)}>0$ such that

$$
\begin{equation*}
\int \frac{d x}{\left(1+\left|x-a^{\prime}\right|\right)^{\alpha}(1+|x-a|)^{\beta}} \leq \frac{c_{(\alpha, \beta)}}{\left(1+\left|a-a^{\prime}\right|\right)^{\alpha}} \tag{3.9}
\end{equation*}
$$

Proof. To prove (3.8) we consider the two integrals corresponding to $|x-\eta|>|\eta|$ and $|x-\eta| \leq|\eta|$. To prove (3.9) we may suppose $a^{\prime}=0$, then we consider the integrals corresponding to $|x|>|a| / 2$ and $|x| \leq|a| / 2$ (see (2.12) in [2]).

Next lemma will be useful for the proof of Lemma 3.5.
Lemma 3.3. If $s \in\left[-\frac{3}{4}, 0\right], b^{\prime} \leq \frac{s}{3}-\frac{1}{4}$ and $b>\frac{1}{2}$, then there exists $c_{\left(s, b, b^{\prime}\right)}>0$ such that

$$
\begin{equation*}
\phi_{1}(\xi, y) \equiv \frac{|\xi|^{3-4 s}}{\left\langle\xi^{3}(y+2)\right\rangle^{-2 b^{\prime}}\langle\xi\rangle^{-2 s}} \int \frac{|y+2|^{-2 s} d x}{\left\langle\xi^{3}\left(y+3 / 4-x^{2}\right)\right\rangle^{2 b}} \leq c_{\left(s, b, b^{\prime}\right)} \tag{3.10}
\end{equation*}
$$

Proof. i.) First, we suppose $\left|y+\frac{3}{4}\right|>\frac{1}{4}$. Since $s \leq 0$ and $b \geq 0$, it follows that

$$
\phi_{1}(\xi, y) \leq \frac{|\xi|^{3-4 s}|y+2|^{-2 s}}{\left\langle\xi^{3}(y+2)\right\rangle^{-2 b^{\prime}}} \int \frac{d x}{\left(1+|\xi|^{3}\left|x^{2}-\left(|y+3 / 4|^{1 / 2}\right)^{2}\right|\right)^{2 b}} .
$$

Since $b>1 / 2$, it follows from (3.8) that

$$
\phi_{1}(\xi, y) \leq c_{b} \frac{\left(|\xi|^{3}|y+2|\right)^{-4 s / 3}|y+2|^{-2 s / 3}}{\left\langle\xi^{3}(y+2)\right\rangle^{-2 b^{\prime}}|y+3 / 4|^{1 / 2}} \leq c_{\left(s, b, b^{\prime}\right)} \frac{|y+2|^{-2 s / 3}}{|y+3 / 4|^{1 / 2}}
$$

where in the last inequality we have used $b^{\prime} \leq \frac{s}{3}-\frac{1}{4}$ and $s \geq-\frac{3}{4}$.
The case $|y+2| \leq 5 / 2$ is immediate. If $|y+2|>5 / 2$, then $|y+3 / 4| \geq|y+2|-5 / 4>$ $|y+2| / 2$; hence $\phi_{1}(\xi, y) \leq c_{\left(s, b, b^{\prime}\right)}|y+2|^{-\frac{2 s}{3}-\frac{1}{2}} \leq c_{\left(s, b, b^{\prime}\right)}$, for $s \geq-3 / 4$.
ii.) Second, we suppose $-\frac{1}{4} \leq y+\frac{3}{4} \leq 0$. Since $s \leq 0$ and $b>\frac{1}{4}$, it follows that

$$
\begin{aligned}
\phi_{1}(\xi, y) & \leq c_{b} \frac{|\xi|^{\frac{3}{2}-2 s}|y+2|^{-2 s}}{\left\langle\xi^{3}(y+2)\right\rangle^{-2 b^{\prime}}} \int_{0}^{+\infty} \frac{|\xi|^{\frac{3}{2}} d x}{\left(1+|\xi|^{3}\left(\left|y+\frac{3}{4}\right|^{\frac{1}{2}}+x\right)^{2}\right)^{2 b}} \\
& \leq c_{b} \frac{|\xi|^{\frac{3}{2}-2 s}|y+2|^{-2 s}}{\left\langle\xi^{3}(y+2)\right\rangle^{-2 b^{\prime}}} \int_{0}^{+\infty} \frac{d z}{\left(1+z^{2}\right)^{2 b}} \leq c_{b} \frac{|\xi|^{\frac{3}{2}-2 s}|y+2|^{-2 s}}{\left\langle\xi^{3}(y+2)\right\rangle^{-2 b^{\prime}}}
\end{aligned}
$$

Since $1 \leq y+2 \leq \frac{5}{4}, b^{\prime} \leq 0$, and $s \leq 0$, it follows from the last inequality that

$$
\phi_{1}(\xi, y) \leq c_{(s, b)} \frac{|\xi|^{\frac{3}{2}-2 s}}{\left\langle\xi^{3}\right\rangle^{-2 b^{\prime}}} \leq c_{\left(s, b, b^{\prime}\right)}
$$

where the last inequality is a consequence of the fact that $b^{\prime} \leq \frac{s}{3}-\frac{1}{4}$.
iii.) Finally, we consider the case $0<y+\frac{3}{4} \leq \frac{1}{4}$. Since $\frac{5}{4}<y+2 \leq \frac{3}{2}, s \leq 0$ and $b^{\prime} \leq \frac{s}{3}-\frac{1}{4}$, it follows that

$$
\begin{aligned}
\phi_{1}(\xi, y) & \leq c_{s} \frac{|\xi|^{\frac{3}{2}-2 s}}{\left(1+|\xi|^{3}\right)^{-2 b^{\prime}}} \int_{0}^{+\infty} \frac{|\xi|^{\frac{3}{2}} d x}{\left(1+|\xi|^{3}\left(y+\frac{3}{4}\right)\left|1-\frac{x^{2}}{y+3 / 4}\right|\right)^{2 b}} \\
& \leq c_{\left(s, b, b^{\prime}\right)} \int_{0}^{+\infty} \frac{|\xi|^{\frac{3}{2}}\left(y+\frac{3}{4}\right)^{\frac{1}{2}} d z}{\left(1+|\xi|^{3}\left(y+\frac{3}{4}\right)\left|1-z^{2}\right|\right)^{2 b}} .
\end{aligned}
$$

Now, we split the last integral into two parts, namely $|z| \leq \sqrt{2}$ and $|z|>\sqrt{2}$. Since $2 b>\frac{1}{2}$, it follows that

$$
\int_{0}^{\sqrt{2}} \frac{|\xi|^{\frac{3}{2}}\left(y+\frac{3}{4}\right)^{\frac{1}{2}} d z}{\left(1+|\xi|^{3}\left(y+\frac{3}{4}\right)\left|1-z^{2}\right|\right)^{2 b}} \leq \int_{0}^{\sqrt{2}} \frac{d z}{\left|1-z^{2}\right|^{1 / 2}} \leq c \int_{0}^{\sqrt{2}} \frac{d z}{|1-z|^{1 / 2}} \leq c
$$

On the other hand, since $z^{2}>2$ implies $z^{2}-1>z^{2} / 2$, and by making the change of variable $x=|\xi|^{\frac{3}{2}}\left(y+\frac{3}{4}\right)^{\frac{1}{2}} z$, it follows that

$$
\int_{\sqrt{2}}^{+\infty} \frac{|\xi|^{\frac{3}{2}}\left(y+\frac{3}{4}\right)^{\frac{1}{2}} d z}{\left(1+|\xi|^{3}\left(y+\frac{3}{4}\right)\left|1-z^{2}\right|\right)^{2 b}} \leq c_{b} \int_{0}^{+\infty} \frac{d x}{\left(1+x^{2}\right)^{2 b}}=c_{b}
$$

The next eight lemmas will be used for proving Proposition 3.2
Lemma 3.4. If $b^{\prime} \leq-\frac{1}{4}$ and $b>\frac{1}{2}$, then there exists $c_{b}>0$ such that

$$
\begin{equation*}
\frac{|\xi|}{\left\langle\tau+\xi^{3}\right\rangle^{-b^{\prime}}}\left(\iint \frac{d \xi_{1} d \tau_{1}}{\left\langle\tau_{1}-\xi_{1}^{3}\right\rangle^{2 b}\left\langle\tau-\tau_{1}-\left(\xi-\xi_{1}\right)^{3}\right\rangle^{2 b}}\right)^{1 / 2} \leq c_{b} \tag{3.11}
\end{equation*}
$$

Proof. Since $b>1 / 2$, it follows from (3.9) that

$$
\int \frac{d \tau_{1}}{\left\langle\tau_{1}-\xi_{1}^{3}\right\rangle^{2 b}\left\langle\tau-\tau_{1}-\left(\xi-\xi_{1}\right)^{3}\right\rangle^{2 b}} \leq \frac{c_{b}}{\left\langle\tau-\xi^{3}+3 \xi \xi_{1}\left(\xi-\xi_{1}\right)\right\rangle^{2 b}}
$$

Then, it is sufficient to prove that

$$
\frac{|\xi|^{2}}{\left(1+\left|\tau+\xi^{3}\right|\right)^{-2 b^{\prime}}} \int \frac{d \xi_{1}}{\left(1+\left|\tau-\xi^{3}+3 \xi \xi_{1}\left(\xi-\xi_{1}\right)\right|\right)^{2 b}} \leq c
$$

By making the change of variable $\tau=\xi^{3}(1+z)$, we need now to verify the following:

$$
\frac{|\xi|^{2}}{\left(1+\left|\xi^{3}\right||z+2|\right)^{-2 b^{\prime}}} \int \frac{d \xi_{1}}{\left(1+\left|\xi^{3} z+3 \xi \xi_{1}\left(\xi-\xi_{1}\right)\right|\right)^{2 b}} \leq c
$$

By performing the change of variable $\xi_{1}=\xi x$ inside the last integral, and $z=3 y$, and since $x-x^{2}=\frac{1}{4}-\left(x-\frac{1}{2}\right)^{2}$, it is not difficult to see that the expression we need to prove now is the following

$$
\phi(\xi, y) \equiv \frac{|\xi|^{3}}{\left(1+|\xi|^{3}|3 y+2|\right)^{-2 b^{\prime}}} \int \frac{d x}{\left(1+|\xi|^{3}\left|y+1 / 4-x^{2}\right|\right)^{2 b}} \leq c
$$

i.) First, we consider the case $|y+1 / 4|>1 / 12$. Then

$$
\phi(\xi, y) \leq \frac{|\xi|^{3}}{\left(1+|\xi|^{3}|3 y+2|\right)^{-2 b^{\prime}}} \int \frac{d x}{\left(1+|\xi|^{3}\left|x^{2}-\left(|y+1 / 4|^{1 / 2}\right)^{2}\right|\right)^{2 b}} \leq c_{b}
$$

where in the last inequality we have used (3.8) and $b^{\prime} \leq 0$.
ii.) Second, we assume $-1 / 3 \leq y \leq-1 / 4$. Since $1+|\xi|^{3}|3 y+2| \geq 1+|\xi|^{3}$ and $b^{\prime} \leq-1 / 4$, it follows that $\frac{|\xi|^{3 / 2}}{\left(1+|\xi|^{3}|3 y+2|\right)^{-2 b^{\prime}}} \leq \frac{|\xi|^{3 / 2}}{\left(1+|\xi|^{3}\right)^{-2 b^{\prime}}} \leq 1$. Then

$$
\phi(\xi, y) \leq c_{b} \int_{0}^{+\infty} \frac{|\xi|^{3 / 2} d x}{\left(1+|\xi|^{3}\left(|y+1 / 4|^{1 / 2}+x\right)^{2}\right)^{2 b}} \leq c_{b} \int_{0}^{+\infty} \frac{d z}{\left(1+z^{2}\right)^{2 b}} \leq c_{b}
$$

iii.) Finally, we suppose $-1 / 4<y \leq-1 / 6$. Since $b^{\prime} \leq-1 / 4$, and by making the change of variable $x=(y+1 / 4)^{1 / 2} z$, we get

$$
\phi(\xi, y) \leq c \int_{0}^{+\infty} \frac{|\xi|^{3 / 2}(y+1 / 4)^{1 / 2} d z}{\left(1+|\xi|^{3}(y+1 / 4)\left|1-z^{2}\right|\right)^{2 b}} \leq c
$$

where in the last inequality we have used the following estimates. Since $b \geq 1 / 4$, it follows that $\left(|\xi|^{3}(y+1 / 4)\left|1-z^{2}\right|\right)^{1 / 2} \leq\left(1+|\xi|^{3}(y+1 / 4)\left|1-z^{2}\right|\right)^{2 b}$. Then

$$
\int_{0}^{\sqrt{2}} \frac{|\xi|^{3 / 2}(y+1 / 4)^{1 / 2} d z}{\left(1+|\xi|^{3}(y+1 / 4)\left|1-z^{2}\right|\right)^{2 b}} \leq \int_{0}^{\sqrt{2}} \frac{d z}{|1-z|^{1 / 2}|1+z|^{1 / 2}} \leq c
$$

Moreover, since $z^{2}-1>z^{2} / 2$ for $z>\sqrt{2}$, and $b>1 / 2$, it follows that

$$
\int_{\sqrt{2}}^{+\infty} \frac{|\xi|^{3 / 2}(y+1 / 4)^{1 / 2} d z}{\left(1+|\xi|^{3}(y+1 / 4)\left|1-z^{2}\right|\right)^{2 b}} \leq \int_{\sqrt{2}}^{+\infty} \frac{2|\xi|^{3 / 2}(y+1 / 4)^{1 / 2} d z}{1+|\xi|^{3}(y+1 / 4) z^{2}} \leq \int_{0}^{+\infty} \frac{2 d x}{1+x^{2}}
$$

Lemma 3.5. If $s \in\left[-\frac{3}{4},-\frac{1}{4}\right], b^{\prime} \in\left[-\frac{1}{2}, \frac{s}{3}-\frac{1}{4}\right]$ and $b>\frac{1}{2}$, then there exists $c_{\left(s, b, b^{\prime}\right)}>0$ such that

$$
\begin{equation*}
\frac{|\xi|}{\left\langle\tau+\xi^{3}\right\rangle^{-b^{\prime}}\langle\xi\rangle^{-s}}\left(\iint_{A} \frac{\left|\xi_{1}\left(\xi-\xi_{1}\right)\right|^{-2 s} d \tau_{1} d \xi_{1}}{\left\langle\tau_{1}-\xi_{1}^{3}\right\rangle^{2 b}\left\langle\tau-\tau_{1}-\left(\xi-\xi_{1}\right)^{3}\right\rangle^{2 b}}\right)^{1 / 2} \leq c_{\left(s, b, b^{\prime}\right)} \tag{3.12}
\end{equation*}
$$

where $A=A(\xi, \tau)$ is defined as
$A=\left\{\left(\xi_{1}, \tau_{1}\right) \in \mathbb{R}^{2} ;\left|\xi_{1}\right| \geq 1,\left|\xi-\xi_{1}\right| \geq 1,\left|\tau-\tau_{1}-\left(\xi-\xi_{1}\right)^{3}\right| \leq\left|\tau_{1}-\xi_{1}^{3}\right| \leq\left|\tau+\xi^{3}\right|\right\}$.
Proof. We denote by χ_{D} the characteristic function of the set D. We remark that $A \subset C \times \mathbb{R}$, where $C=C(\xi, \tau) \equiv\left\{\xi_{1} \in \mathbb{R} ;\left|\tau-\xi^{3}+3 \xi \xi_{1}\left(\xi-\xi_{1}\right)\right| \leq 2\left|\tau+\xi^{3}\right|\right\}$. By using (3.9) which is valid for $b>1 / 2$, it is enough to get a constant upper bound on the following expression

$$
\tilde{\phi}(\xi, \tau) \equiv \frac{|\xi|^{2}}{\left\langle\tau+\xi^{3}\right\rangle^{-2 b^{\prime}}\langle\xi\rangle^{-2 s}} \int \frac{\left|\xi_{1}\left(\xi-\xi_{1}\right)\right|^{-2 s} \chi_{C(\xi, \tau)}\left(\xi_{1}\right) d \xi_{1}}{\left\langle\tau-\xi^{3}+3 \xi \xi_{1}\left(\xi-\xi_{1}\right)\right\rangle^{2 b}} .
$$

From now on we assume $\xi \neq 0$. By making $\tau=\xi^{3}(1+y)$, we see that it is sufficient to get an upper bound to

$$
\tilde{\phi}_{1}(\xi, y) \equiv \frac{|\xi|^{2}}{\left\langle\xi^{3}(y+2)\right\rangle^{-2 b^{\prime}}\langle\xi\rangle^{-2 s}} \int \frac{\left|\xi_{1}\left(\xi-\xi_{1}\right)\right|^{-2 s} \chi_{C\left(\xi, \xi^{3}(1+y)\right)}\left(\xi_{1}\right) d \xi_{1}}{\left\langle\xi^{3} y+3 \xi \xi_{1}\left(\xi-\xi_{1}\right)\right\rangle^{2 b}} .
$$

Now, we make the change of variable $\xi_{1}=\xi x$. Since $x-x^{2}=\frac{1}{4}-\left(x-\frac{1}{2}\right)^{2}$, we get

$$
\tilde{\phi}_{1}(\xi, y) \leq \frac{|\xi|^{3-4 s}}{\left\langle\xi^{3}(y+2)\right\rangle^{-2 b^{\prime}}\langle\xi\rangle^{-2 s}} \int \frac{\left|\left(x-\frac{1}{2}\right)^{2}-\frac{1}{4}\right|^{-2 s} \chi_{D_{y}}(x) d x}{\left\langle\xi^{3}\left(y+3\left(\frac{1}{4}-\left(x-\frac{1}{2}\right)^{2}\right)\right)\right\rangle^{2 b}},
$$

where $D_{y}=\left\{x ;\left|y+3\left(x-x^{2}\right)\right| \leq 2|y+2|\right\}$. We denote by E_{y} the set given by $\left\{x ;\left|y+3 / 4-3 x^{2}\right| \leq 2|y+2|\right\}$, then we need an upper bound on the quantity

$$
\phi(\xi, y) \equiv \frac{|\xi|^{3-4 s}}{\left\langle\xi^{3}(y+2)\right\rangle^{-2 b^{\prime}}\langle\xi\rangle^{-2 s}} \int \frac{\left|x^{2}-\frac{1}{4}\right|^{-2 s} \chi_{E_{y}}(x) d x}{\left\langle\xi^{3}\left(y+3 / 4-3 x^{2}\right)\right\rangle^{2 b}} .
$$

i.) First, we suppose $|y+2|>1$. We remark that $\left|y-3 x^{2}+\frac{3}{4}\right| \leq 2|y+2|$ implies $\left|x^{2}-\frac{1}{4}\right|^{-2 s} \leq c_{s}|y+2|^{-2 s}+c_{s}$, for $s \leq 0$. If $\phi_{1}(\xi, y)$ is given by (3.10), then we get

$$
\phi(\xi, y) \leq c_{s} \phi_{1}(\xi, y)\left(1+\frac{1}{|y+2|^{-2 s}}\right) \leq c_{\left(s, b, b^{\prime}\right)},
$$

where in the last inequality we have used Lemma 3.3
ii.) Now, we assume $|y+2| \leq 1$. In E_{y} we have that $\left|y-3 x^{2}+\frac{3}{4}\right| \leq 2|y+2| \leq 2$, then $0 \leq x^{2} \leq \frac{7}{12}$. Hence $E_{y} \subset[-1,1]$. Moreover, $\left|(y+2)-\left(3 x^{2}+\frac{5}{4}\right)\right| \leq 2|y+2|$ implies $\left|x^{2}-\frac{1}{4}\right| \leq \frac{5}{4} \leq 3\left(x^{2}+\frac{5}{12}\right) \leq 3|y+2|$. Therefore, since $s \leq 0$, we see that

$$
\phi(\xi, y) \leq \frac{c_{s}|\xi|^{3-4 s}}{\left\langle\xi^{3}(y+2)\right\rangle^{-2 b^{\prime}}\langle\xi\rangle^{-2 s}} \int_{0}^{1} \frac{|y+2|^{-2 s} d x}{\left\langle\xi^{3}\left(y+3 / 4-3 x^{2}\right)\right\rangle^{2 b}} \leq c_{\left(s, b, b^{\prime}\right)},
$$

where the last inequality is a consequence of (3.10).
Lemma 3.6. If $s \in\left(-\frac{3}{4},-\frac{1}{2}\right], b^{\prime} \in\left(-\frac{1}{2}, 0\right]$, and $b>\frac{1}{2}$ with $b^{\prime}-b \leq \min \{-s-$ $\left.\frac{3}{2}, s-\frac{1}{6}\right\}$, then there exists $c_{\left(s, b, b^{\prime}\right)}>0$ such that

$$
\begin{equation*}
\frac{1}{\left\langle\tau_{1}-\xi_{1}^{3}\right\rangle^{b}}\left(\iint_{B} \frac{|\xi|^{2(1+s)}\left|\xi \xi_{1}\left(\xi-\xi_{1}\right)\right|^{-2 s} d \xi d \tau}{\langle\xi\rangle^{-2 s}\left\langle\tau+\xi^{3}\right\rangle^{-2 b^{\prime}}\left\langle\tau-\tau_{1}-\left(\xi-\xi_{1}\right)^{3}\right\rangle^{2 b}}\right)^{1 / 2} \leq c_{\left(s, b, b^{\prime}\right)}, \tag{3.13}
\end{equation*}
$$

where $B=B\left(\xi_{1}, \tau_{1}\right)$ is defined as
$B=\left\{(\xi, \tau) \in \mathbb{R}^{2} ;\left|\xi_{1}\right| \geq 1,\left|\xi-\xi_{1}\right| \geq 1,\left|\tau-\tau_{1}-\left(\xi-\xi_{1}\right)^{3}\right| \leq\left|\tau_{1}-\xi_{1}^{3}\right|,\left|\tau+\xi^{3}\right| \leq\left|\tau_{1}-\xi_{1}^{3}\right|\right\}$.

Proof. We remark that in $B:\left|\tau_{1}+2 \xi^{3}-\xi_{1}^{3}-3 \xi \xi_{1}\left(\xi-\xi_{1}\right)\right| \leq 2\left|\tau_{1}-\xi_{1}^{3}\right|$. By the inequality (3.9), it is sufficient to get an upper bound on the expression

$$
I\left(B^{\prime}\right)=\frac{1}{\left\langle\tau_{1}-\xi_{1}^{3}\right\rangle^{b}}\left(\int_{B^{\prime}} \frac{|\xi|^{2(1+s)}\left|\xi \xi_{1}\left(\xi-\xi_{1}\right)\right|^{-2 s} d \xi}{\langle\xi\rangle^{-2 s}\left\langle\tau_{1}+2 \xi^{3}-\xi_{1}^{3}-3 \xi \xi_{1}\left(\xi-\xi_{1}\right)\right\rangle^{-2 b^{\prime}}}\right)^{1 / 2}
$$

where $B^{\prime}=\left\{\xi \in \mathbb{R} ;\left|\xi_{1}\right| \geq 1,\left|\xi-\xi_{1}\right| \geq 1,\left|\tau_{1}+2 \xi^{3}-\xi_{1}^{3}-3 \xi \xi_{1}\left(\xi-\xi_{1}\right)\right| \leq 2\left|\tau_{1}-\xi^{3}\right|\right\}$. It is not difficult to see that $B^{\prime}=B_{1}^{\prime} \cup B_{2}^{\prime}$, where $B_{1}^{\prime}=\left\{\xi \in B^{\prime} ;\left|2 \xi^{3}-3 \xi \xi_{1}\left(\xi-\xi_{1}\right)\right| \leq\right.$ $\left.\frac{1}{2}\left|\tau_{1}-\xi_{1}^{3}\right|\right\}$ and $B_{2}^{\prime}=\left\{\xi \in B^{\prime} ; \frac{1}{2}\left|\tau_{1}-\xi_{1}^{3}\right| \leq\left|2 \xi^{3}-3 \xi \xi_{1}\left(\xi-\xi_{1}\right)\right| \leq 3\left|\tau_{1}-\xi_{1}^{3}\right|\right\}$.
i.) In B_{1}^{\prime} we have that:

$$
\begin{gathered}
\frac{1}{2}\left|\tau_{1}-\xi_{1}^{3}\right| \leq\left|\tau_{1}-\xi_{1}^{3}+2 \xi^{3}-3 \xi \xi_{1}\left(\xi-\xi_{1}\right)\right|, \\
|\xi| \leq\left|2 \xi^{3}-3 \xi \xi_{1}\left(\xi-\xi_{1}\right)\right| \leq \frac{1}{2}\left|\tau_{1}-\xi_{1}^{3}\right|
\end{gathered}
$$

and

$$
\left|\xi \xi_{1}\left(\xi-\xi_{1}\right)\right| \leq\left|2 \xi^{3}-3 \xi \xi_{1}\left(\xi-\xi_{1}\right)\right| \leq \frac{1}{2}\left|\tau_{1}-\xi_{1}^{3}\right|
$$

Since $b^{\prime} \leq 0$, and $-\frac{3}{4}<s \leq 0$, it follows that

$$
\begin{aligned}
I\left(B_{1}^{\prime}\right) & \leq \frac{c_{b^{\prime}}}{\left\langle\tau_{1}-\xi_{1}^{3}\right\rangle^{b-b^{\prime}}}\left(\int_{B_{1}^{\prime}} \frac{|\xi|^{2(1+s)}\left|\xi \xi_{1}\left(\xi-\xi_{1}\right)\right|^{-2 s} d \xi}{\langle\xi\rangle^{-2 s}}\right)^{1 / 2} \\
& \leq \frac{c_{b^{\prime}}}{\left\langle\tau_{1}-\xi_{1}^{3}\right\rangle^{b-b^{\prime}+s}}\left(\int_{0}^{\left|\tau_{1}-\xi_{1}^{3}\right|}(1+\xi)^{2+4 s} d \xi\right)^{1 / 2} \\
& \leq \frac{c_{\left(s, b^{\prime}\right)}}{\left\langle\tau_{1}-\xi_{1}^{3}\right\rangle^{b-b^{\prime}-\frac{3}{2}-s}} \leq c_{\left(s, b^{\prime}\right)}
\end{aligned}
$$

where in the last inequality we have used the fact that $b^{\prime}-b \leq-s-\frac{3}{2}$.
ii.) First, we remark that in B_{2}^{\prime} we have that

$$
3\left|\xi \xi_{1}\left(\xi-\xi_{1}\right)\right| \leq\left|2 \xi^{3}-3 \xi \xi_{1}\left(\xi-\xi_{1}\right)\right| \leq 3\left|\tau_{1}-\xi_{1}^{3}\right|
$$

We define the function $\mu(\xi)=\mu_{\xi_{1}, \tau_{1}}(\xi) \equiv \tau_{1}+2 \xi^{3}-\xi_{1}^{3}-3 \xi \xi_{1}\left(\xi-\xi_{1}\right)$, for $\xi \in B^{\prime}$. We remark that $\mu^{\prime}(\xi)=3\left(\xi-\xi_{1}\right)^{2}+3 \xi^{2}=6\left(\xi-\frac{1}{2} \xi_{1}\right)^{2}+\frac{3}{2} \xi_{1}^{2}$. Now, we decompose B_{2}^{\prime} into two parts: $B_{2,1}^{\prime}$ and $B_{2,2}^{\prime}$.
Let $B_{2,1}^{\prime} \equiv\left\{\xi \in B_{2}^{\prime} ; 1 \leq\left|\xi_{1}\right| \leq 10|\xi|\right\}$. In this set we get:

$$
1+\left|\tau_{1}-\xi_{1}^{3}\right| \leq\left|\xi_{1}\right|^{3}+2\left|2 \xi^{3}-3 \xi \xi_{1}\left(\xi-\xi_{1}\right)\right| \leq c|\xi|^{3}
$$

Moreover, since $-1 \leq s \leq-\frac{1}{2}$, it follows from the last inequality that

$$
\frac{|\xi|^{2(1+s)}}{\langle\xi\rangle^{-2 s}} \leq \frac{1}{\langle\xi\rangle^{2(-2 s-1)}} \leq \frac{c_{s}}{\left\langle\tau_{1}-\xi_{1}^{3}\right\rangle^{\frac{2}{3}(-2 s-1)}}
$$

Since $\mu^{\prime}(\xi) \geq 3 \xi^{2}$, it follows that

$$
\frac{1}{\mu^{\prime}(\xi)} \leq \frac{1}{3 \xi^{2}} \leq \frac{c}{\left\langle\tau_{1}-\xi_{1}^{3}\right\rangle^{\frac{2}{3}}}, \quad \text { for } \xi \in B_{2,1}^{\prime}
$$

Then, since $b^{\prime}>-\frac{1}{2}$, and $-1 \leq s \leq-1 / 2$, we get

$$
\begin{aligned}
I\left(B_{2,1}^{\prime}\right) & \leq \frac{c_{s}}{\left\langle\tau_{1}-\xi_{1}^{3}\right\rangle^{b+\frac{1}{3} s}}\left(\int_{B_{2,1}^{\prime}} \frac{\mu^{\prime}(\xi) d \xi}{\langle\mu(\xi)\rangle^{-2 b^{\prime}}}\right)^{\frac{1}{2}} \\
& \leq \frac{c_{s}}{\left\langle\tau_{1}-\xi_{1}^{3}\right\rangle^{b+\frac{1}{3} s}}\left(\int_{|\mu| \leq 2\left|\tau_{1}-\xi_{1}^{3}\right|} \frac{d \mu}{\langle\mu\rangle^{-2 b^{\prime}}}\right)^{\frac{1}{2}} \\
& \leq \frac{c_{\left(s, b^{\prime}\right)}}{\left\langle\tau_{1}-\xi_{1}^{3}\right\rangle^{b-b^{\prime}+\frac{1}{3} s-\frac{1}{2}}} \leq c_{\left(s, b^{\prime}\right)},
\end{aligned}
$$

where the last inequality is a consequence of $b^{\prime}-b \leq-s-\frac{3}{2}$, and $s \geq-\frac{3}{4}$.
Finally, we consider $B_{2,2}^{\prime} \equiv\left\{\xi \in B_{2}^{\prime} ; 10|\xi| \leq\left|\xi_{1}\right|\right\}$. Since $-1 \leq s \leq-\frac{1}{2}$, we get

$$
\frac{|\xi|^{2(1+s)}}{\langle\xi\rangle^{-2 s}} \leq \frac{1}{\langle\xi\rangle^{2(-2 s-1)}} \leq 1
$$

Moreover, in $B_{2,2}^{\prime}$ we have that

$$
1+\left|\tau_{1}-\xi_{1}^{3}\right| \leq\left|\xi_{1}\right|^{3}+2\left|2 \xi^{3}-3 \xi \xi_{1}\left(\xi-\xi_{1}\right)\right| \leq c\left|\xi_{1}\right|^{3}
$$

Since $\mu^{\prime}(\xi) \geq \frac{3}{2} \xi_{1}^{2}$, we see that

$$
\frac{1}{\mu^{\prime}(\xi)} \leq \frac{c}{\xi_{1}^{2}} \leq \frac{c}{\left\langle\tau_{1}-\xi_{1}^{3}\right\rangle^{\frac{2}{3}}}, \quad \text { for } \xi \in B_{2,2}^{\prime}
$$

Then, by using $b^{\prime}>-\frac{1}{2},-1 \leq s \leq-1 / 2$, and $b^{\prime}-b \leq s-\frac{1}{6}$, we see that

$$
I\left(B_{2,2}^{\prime}\right) \leq \frac{c_{b^{\prime}}}{\left\langle\tau_{1}-\xi_{1}^{3}\right\rangle^{b-b^{\prime}+s-\frac{1}{6}}} \leq c_{b^{\prime}}
$$

Lemma 3.7. If $b^{\prime} \leq 0$ and $b>\frac{1}{2}$, then there exists $c_{b}>0$ such that

$$
\begin{equation*}
\frac{|\xi|}{\left\langle\tau+\xi^{3}\right\rangle^{-b^{\prime}}}\left(\iint \frac{d \xi_{1} d \tau_{1}}{\left\langle\tau_{1}+\xi_{1}^{3}\right\rangle^{2 b}\left\langle\tau-\tau_{1}-\left(\xi-\xi_{1}\right)^{3}\right\rangle^{2 b}}\right)^{1 / 2} \leq c_{b} \tag{3.14}
\end{equation*}
$$

Proof. Since $b>\frac{1}{2}$, it follows from (3.9) that

$$
\int \frac{d \tau_{1}}{\left\langle\tau_{1}+\xi_{1}^{3}\right\rangle^{2 b}\left\langle\tau-\tau_{1}-\left(\xi-\xi_{1}\right)^{3}\right\rangle^{2 b}} \leq \frac{c_{b}}{\left\langle\tau-\xi^{3}+3 \xi \xi_{1}\left(\xi-\xi_{1}\right)+2 \xi_{1}^{3}\right\rangle^{2 b}}
$$

Then, it suffices to prove that

$$
\frac{|\xi|^{2}}{\left\langle\tau+\xi^{3}\right\rangle^{-2 b^{\prime}}} \int \frac{d \xi_{1}}{\left\langle\tau-\xi^{3}+3 \xi \xi_{1}\left(\xi-\xi_{1}\right)+2 \xi_{1}^{3}\right\rangle^{2 b}} \leq c
$$

By making the change of variable $\tau=\xi^{3}(1+z)$, and then $\xi_{1}=\xi x$ inside the integral, it suffices to bound

$$
\phi(\xi, z) \equiv \frac{|\xi|^{3}}{\left(1+|\xi|^{3}|z+2|\right)^{-2 b^{\prime}}} \int \frac{d x}{\left(1+|\xi|^{3}\left|z+3\left(x-x^{2}\right)+2 x^{3}\right|\right)^{2 b}} .
$$

We define the function $\mu(x)=\mu_{z}(x) \equiv 2 x^{3}-3 x^{2}+3 x+z$. Then $\mu^{\prime}(x)=6(x-$ $\left.\frac{1}{2}\right)^{2}+\frac{3}{2} \geq \frac{3}{2}$. Since $b^{\prime} \leq 0$ and $b>\frac{1}{2}$, it follows that

$$
\phi(\xi, z) \leq \frac{c|\xi|^{3}}{\left\langle\xi^{3}(z+2)\right\rangle^{-2 b^{\prime}}} \int \frac{\mu_{z}^{\prime}(x) d x}{\left\langle\xi^{3} \mu_{z}(x)\right\rangle^{2 b}} \leq c|\xi|^{3} \int \frac{d \mu}{\left\langle\xi^{3} \mu\right\rangle^{2 b}}=c_{b}
$$

Lemma 3.8. If $s \in\left[-\frac{3}{4},-\frac{1}{2}\right], b^{\prime} \in\left[-\frac{1}{2}, \frac{s}{3}-\frac{1}{4}\right]$ and $b>\frac{1}{2}$, then there exists $c_{(s, b)}>0$ such that

$$
\begin{equation*}
\frac{|\xi|}{\left\langle\tau+\xi^{3}\right\rangle^{-b^{\prime}}\langle\xi\rangle^{-s}}\left(\iint_{A_{1}} \frac{\left|\xi_{1}\left(\xi-\xi_{1}\right)\right|^{-2 s} d \tau_{1} d \xi_{1}}{\left\langle\tau_{1}+\xi_{1}^{3}\right\rangle^{2 b}\left\langle\tau-\tau_{1}-\left(\xi-\xi_{1}\right)^{3}\right\rangle^{2 b}}\right)^{1 / 2} \leq c_{(s, b)} \tag{3.15}
\end{equation*}
$$

where $A_{1}=A_{1}(\xi, \tau)$ is defined as
$A_{1}=\left\{\left(\xi_{1}, \tau_{1}\right) \in \mathbb{R}^{2} ;\left|\xi_{1}\right| \geq 1,\left|\xi-\xi_{1}\right| \geq 1,\left|\tau-\tau_{1}-\left(\xi-\xi_{1}\right)^{3}\right| \leq\left|\tau_{1}+\xi_{1}^{3}\right| \leq\left|\tau+\xi^{3}\right|\right\}$.
Proof. We remark that $A_{1} \subset C \times \mathbb{R}$, where $C=C(\xi, \tau)=\left\{\xi_{1} \in \mathbb{R} ; \mid \tau-\xi^{3}+3 \xi \xi_{1}(\xi-\right.$ $\left.\left.\xi_{1}\right)+2 \xi_{1}^{3}|\leq 2| \tau+\xi^{3} \mid\right\}$. Since $b>\frac{1}{2}$, it follows from (3.9) that it is enough to get an upper bound to

$$
\frac{|\xi|^{2}}{\left\langle\tau+\xi^{3}\right\rangle^{-2 b^{\prime}}\langle\xi\rangle^{-2 s}} \int \frac{\left|\xi_{1}\left(\xi-\xi_{1}\right)\right|^{-2 s} \chi_{C(\xi, \tau)}\left(\xi_{1}\right) d \xi_{1}}{\left\langle\tau-\xi^{3}+3 \xi \xi_{1}\left(\xi-\xi_{1}\right)+2 \xi_{1}^{3}\right\rangle^{2 b}} .
$$

We assume $\xi \neq 0$. Now, we make $\tau=\xi^{3}(1+y)$, and $\xi_{1}=\xi x$. Since $s \leq 0$, it follows that it suffices to bound

$$
\phi(\xi, y) \equiv \frac{|\xi|^{3-2 s}}{\left\langle\xi^{3}(y+2)\right\rangle^{-2 b^{\prime}}} \int \frac{\left|x-x^{2}\right|^{-2 s} \chi_{D_{y}}(x) d x}{\left\langle\xi^{3}\left(y+3\left(x-x^{2}\right)+2 x^{3}\right)\right\rangle^{2 b}},
$$

where $D_{y}=\left\{x ;\left|y+3\left(x-x^{2}\right)+2 x^{3}\right| \leq 2|y+2|\right\}$. We remark that $\left|x^{2}-x\right| \leq$ $\left|2 x^{3}-3 x^{2}+3 x-2\right|$, for all $x \in \mathbb{R}$. Hence, $\left|x-x^{2}\right| \leq 3|y+2|$, for $x \in D_{y}$. We denote by $\mu(x)=\mu_{y}(x) \equiv 2 x^{3}-3 x^{2}+3 x+y$.
i.) First, we suppose $|y+2| \leq 1$. It is not difficult to see that $D_{y} \subset[-1,2]$. We now assume that $|\xi| \leq 1$. Since $\mu^{\prime}(x) \geq \frac{3}{2}, s \leq 0, b^{\prime} \leq 0$, and $b>\frac{1}{2}$, we have that

$$
\phi(\xi, y) \leq c_{s} \int_{-1}^{2} \frac{|\xi|^{3} \mu_{y}^{\prime}(x) d x}{\left\langle\xi^{3} \mu_{y}(x)\right\rangle^{2 b}} \leq c_{s} \int \frac{d z}{\langle z\rangle^{2 b}}=c_{(s, b)}
$$

Next, we consider the case $|\xi|>1$. Since $s \leq 0$ and $b^{\prime} \leq 0$, it follows that

$$
\begin{aligned}
\phi(\xi, y) & \leq c_{s} \frac{|\xi|^{3-2 s}}{|\xi|^{-3 b^{\prime}}|y+2|^{-b^{\prime}}} \int \frac{|y+2|^{-2 s} d x}{\left\langle\xi^{3} \mu_{y}(x)\right\rangle^{2 b}} \\
& \leq c_{s}|\xi|^{-2 s+3 b^{\prime}}|y+2|^{-2 s+b^{\prime}} \int \frac{d w}{\langle w\rangle^{2 b}} \leq c_{(s, b)}
\end{aligned}
$$

where the last inequality is a consequence of $b>\frac{1}{2},-\frac{1}{2} \leq b^{\prime} \leq \frac{s}{3}-\frac{1}{4},-\frac{3}{4} \leq s \leq-\frac{1}{4}$. ii.) Finally, we assume $|y+2|>1$. Since $\mu^{\prime}(x)=6\left(x^{2}-x\right)+3 \geq\left|x^{2}-x\right|$, and $s \leq-\frac{1}{2}$, it follows that

$$
\begin{aligned}
\phi(\xi, y) & \leq c_{s} \frac{|\xi|^{3-2 s}|y+2|^{-2 s-1}}{\left\langle\xi^{3}(y+2)\right\rangle^{-2 b^{\prime}}} \int_{D_{y}} \frac{\mu_{y}^{\prime}(x) d x}{\left\langle\xi^{3} \mu_{y}(x)\right\rangle^{2 b}} \\
& \leq c_{s}\left(1+|\xi|^{3}|y+2|\right)^{-\frac{2 s}{3}+2 b^{\prime}}|y+2|^{-\frac{4 s}{3}-1} \int_{0}^{+\infty} \frac{d w}{\langle w\rangle^{2 b}}
\end{aligned}
$$

Finally, since $b^{\prime} \leq \frac{s}{3}, s \geq-\frac{3}{4}$, and $b>\frac{1}{2}$, we have that $\phi(\xi, y) \leq c_{(s, b)}$.

Lemma 3.9. If $s \in\left(-\frac{3}{4},-\frac{1}{2}\right], b^{\prime} \in\left(-\frac{1}{2}, 0\right]$, and $b>\frac{1}{2}$ with $b^{\prime}-b \leq \min \{-s-$ $\left.\frac{3}{2}, s-\frac{1}{6}\right\}$, then there exists $c_{\left(s, b, b^{\prime}\right)}>0$ such that

$$
\begin{equation*}
\frac{1}{\left\langle\tau_{1}+\xi_{1}^{3}\right\rangle^{b}}\left(\iint_{B_{1}} \frac{|\xi|^{2(1+s)}\left|\xi \xi_{1}\left(\xi-\xi_{1}\right)\right|^{-2 s} d \xi d \tau}{\langle\xi\rangle^{-2 s}\left\langle\tau+\xi^{3}\right\rangle^{-2 b^{\prime}}\left\langle\tau-\tau_{1}-\left(\xi-\xi_{1}\right)^{3}\right\rangle^{2 b}}\right)^{1 / 2} \leq c_{\left(s, b, b^{\prime}\right)} \tag{3.16}
\end{equation*}
$$

where $B_{1}=B_{1}\left(\xi_{1}, \tau_{1}\right)$ is defined as
$B_{1}=\left\{(\xi, \tau) \in \mathbb{R}^{2} ;\left|\xi_{1}\right| \geq 1,\left|\xi-\xi_{1}\right| \geq 1,\left|\tau-\tau_{1}-\left(\xi-\xi_{1}\right)^{3}\right| \leq\left|\tau_{1}+\xi_{1}^{3}\right|,\left|\tau+\xi^{3}\right| \leq\left|\tau_{1}+\xi_{1}^{3}\right|\right\}$.
Proof. We remark that in $B_{1}:\left|\tau_{1}+2 \xi^{3}-\xi_{1}^{3}-3 \xi \xi_{1}\left(\xi-\xi_{1}\right)\right| \leq 2\left|\tau_{1}+\xi_{1}^{3}\right|$. Since $b>\frac{1}{2}$ and $b^{\prime} \in\left[-\frac{1}{2}, 0\right]$, it follows from (3.9) that it suffices to bound

$$
I\left(\tilde{B}_{1}\right)=\frac{1}{\left\langle\tau_{1}+\xi_{1}^{3}\right\rangle^{b}}\left(\int_{\tilde{B}_{1}} \frac{|\xi|^{2(1+s)}\left|\xi \xi_{1}\left(\xi-\xi_{1}\right)\right|^{-2 s} d \xi}{\langle\xi\rangle^{-2 s}\left\langle\tau_{1}+2 \xi^{3}-\xi_{1}^{3}-3 \xi \xi_{1}\left(\xi-\xi_{1}\right)\right\rangle^{-2 b^{\prime}}}\right)^{1 / 2}
$$

where $\tilde{B}_{1}=\tilde{B}_{1}\left(\xi_{1}, \tau_{1}\right)=\left\{\xi \in \mathbb{R} ;\left|\xi_{1}\right| \geq 1,\left|\xi-\xi_{1}\right| \geq 1,\left|\tau_{1}+2 \xi^{3}-\xi_{1}^{3}-3 \xi \xi_{1}\left(\xi-\xi_{1}\right)\right| \leq\right.$ $\left.2\left|\tau_{1}+\xi^{3}\right|\right\}$. We split $\tilde{B}_{1}=\tilde{B}_{1,1} \cup \tilde{B}_{1,2}$, where

$$
\begin{aligned}
\tilde{B}_{1,1} & =\left\{\xi \in \tilde{B}_{1} ;\left|2 \xi^{3}-3 \xi \xi_{1}\left(\xi-\xi_{1}\right)-2 \xi_{1}^{3}\right| \leq \frac{1}{2}\left|\tau_{1}+\xi_{1}^{3}\right|\right\}, \quad \text { and } \\
\tilde{B}_{1,2} & =\left\{\xi \in \tilde{B}_{1} ; \frac{1}{2}\left|\tau_{1}+\xi_{1}^{3}\right| \leq\left|2 \xi^{3}-3 \xi \xi_{1}\left(\xi-\xi_{1}\right)-2 \xi_{1}^{3}\right| \leq 3\left|\tau_{1}+\xi_{1}^{3}\right|\right\}
\end{aligned}
$$

i.) In $\tilde{B}_{1,1}$ we have that:

$$
\frac{1}{2}\left|\tau_{1}+\xi_{1}^{3}\right| \leq\left|\tau_{1}-\xi_{1}^{3}+2 \xi^{3}-3 \xi \xi_{1}\left(\xi-\xi_{1}\right)\right|
$$

Since $2 \xi^{3}-3 \xi \xi_{1}\left(\xi-\xi_{1}\right)-2 \xi_{1}^{3}=\left(\xi-\xi_{1}\right)\left(2 \xi^{2}-\xi \xi_{1}+2 \xi_{1}^{2}\right)$, we also have that

$$
|\xi| \leq\left|\xi \xi_{1}\left(\xi-\xi_{1}\right)\right| \leq\left|2 \xi^{3}-3 \xi \xi_{1}\left(\xi-\xi_{1}\right)-2 \xi_{1}^{3}\right| \leq \frac{1}{2}\left|\tau_{1}+\xi_{1}^{3}\right|
$$

Since $b^{\prime} \leq 0$, and $-\frac{3}{4}<s \leq 0$, it follows that

$$
\begin{aligned}
I\left(\tilde{B}_{1,1}\right) & \leq \frac{c_{b^{\prime}}}{\left\langle\tau_{1}+\xi_{1}^{3}\right\rangle^{b-b^{\prime}+s}}\left(\int_{0}^{\left|\tau_{1}+\xi_{1}^{3}\right|}(1+\xi)^{2+4 s} d \xi\right)^{1 / 2} \\
& \leq \frac{c_{\left(s, b^{\prime}\right)}}{\left\langle\tau_{1}+\xi_{1}^{3}\right\rangle^{b-b^{\prime}-\frac{3}{2}-s}} \leq c_{\left(s, b^{\prime}\right)}
\end{aligned}
$$

where in the last inequality we have used the fact that $b^{\prime}-b \leq-s-\frac{3}{2}$.
ii.) In $\tilde{B}_{1,2}$ we have that

$$
|\xi| \leq\left|\xi \xi_{1}\left(\xi-\xi_{1}\right)\right| \leq\left|2 \xi^{3}-3 \xi \xi_{1}\left(\xi-\xi_{1}\right)-2 \xi_{1}^{3}\right| \leq 3\left|\tau_{1}+\xi_{1}^{3}\right|
$$

We define the function $\mu(\xi)=\mu_{\xi_{1}, \tau_{1}}(\xi) \equiv \tau_{1}+2 \xi^{3}-\xi_{1}^{3}-3 \xi \xi_{1}\left(\xi-\xi_{1}\right)$. Then $\mu^{\prime}(\xi)=3\left(\xi-\xi_{1}\right)^{2}+3 \xi^{2}=6\left(\xi-\frac{1}{2} \xi_{1}\right)^{2}+\frac{3}{2} \xi_{1}^{2}$. We see that $\tilde{B}_{1,2}=\tilde{B}_{1,2}^{1} \cup \tilde{B}_{1,2}^{2}$, where $\tilde{B}_{1,2}^{1} \equiv\left\{\xi \in \tilde{B}_{1,2} ; 1 \leq\left|\xi_{1}\right| \leq 10|\xi|\right\}$, and $\tilde{B}_{1,2}^{2} \equiv\left\{\xi \in \tilde{B}_{1,2} ; 10|\xi| \leq\left|\xi_{1}\right|\right\}$. The rest of the proof is similar to the proof of Lemma 3.6-ii.). Since $-\frac{3}{4} \leq s \leq-\frac{1}{2}, b^{\prime}>-\frac{1}{2}$ and $b^{\prime}-b \leq-s-\frac{3}{2}$, it follows that $I\left(\tilde{B}_{1,2}^{1}\right) \leq c_{\left(s, b^{\prime}\right)}$. Finally, since $-1 \leq s \leq-\frac{1}{2}$, $b^{\prime}>-\frac{1}{2}$ and $b^{\prime}-b \leq s-\frac{1}{6}$, we have that $I\left(\tilde{B}_{1,2}^{2}\right) \leq c_{\left(s, b^{\prime}\right)}$.

Lemma 3.10. If $s \in\left[-\frac{3}{4},-\frac{1}{2}\right], b^{\prime} \in\left[-\frac{1}{2}, \frac{s}{3}-\frac{1}{4}\right]$ and $b>\frac{1}{2}$, then there exists $c_{(s, b)}>0$ such that

$$
\begin{equation*}
\frac{|\xi|}{\left\langle\tau+\xi^{3}\right\rangle^{-b^{\prime}}\langle\xi\rangle^{-s}}\left(\iint_{A_{2}} \frac{\left|\xi_{1}\left(\xi-\xi_{1}\right)\right|^{-2 s} d \tau_{1} d \xi_{1}}{\left\langle\tau_{1}-\xi_{1}^{3}\right\rangle^{2 b}\left\langle\tau-\tau_{1}+\left(\xi-\xi_{1}\right)^{3}\right\rangle^{2 b}}\right)^{1 / 2} \leq c_{(s, b)} \tag{3.17}
\end{equation*}
$$

where $A_{2}=A_{2}(\xi, \tau)$ is defined as
$A_{2}=\left\{\left(\xi_{1}, \tau_{1}\right) \in \mathbb{R}^{2} ;\left|\xi_{1}\right| \geq 1,\left|\xi-\xi_{1}\right| \geq 1,\left|\tau-\tau_{1}+\left(\xi-\xi_{1}\right)^{3}\right| \leq\left|\tau_{1}-\xi_{1}^{3}\right| \leq\left|\tau+\xi^{3}\right|\right\}$.
Proof. It is not difficult to see that $A_{2} \subset C \times \mathbb{R}$, where $C=C(\xi, \tau)=\left\{\xi_{1} \in\right.$ $\left.\mathbb{R} ;\left|\tau+\xi^{3}-3 \xi_{1} \xi\left(\xi-\xi_{1}\right)-2 \xi_{1}^{3}\right| \leq 2\left|\tau+\xi^{3}\right|\right\}$. Since $b>\frac{1}{2}$, it follows from (3.9) that it suffices to bound

$$
\frac{|\xi|^{2}}{\left\langle\tau+\xi^{3}\right\rangle^{-2 b^{\prime}}\langle\xi\rangle^{-2 s}} \int \frac{\left|\xi_{1}\left(\xi-\xi_{1}\right)\right|^{-2 s} \chi_{C(\xi, \tau)}\left(\xi_{1}\right) d \xi_{1}}{\left\langle\tau+\xi^{3}-3 \xi \xi_{1}\left(\xi-\xi_{1}\right)-2 \xi_{1}^{3}\right\rangle^{2 b}}
$$

We assume $\xi \neq 0$. Then we make $\tau=\xi^{3}(-1+y)$ and $\xi_{1}=\xi x$. Since $s \leq 0$, we see that it is sufficient to bound

$$
\phi(\xi, y) \equiv \frac{|\xi|^{3-2 s}}{\left\langle\xi^{3} y\right\rangle^{-2 b^{\prime}}} \int \frac{\left|x-x^{2}\right|^{-2 s} \chi_{E_{y}}(x) d x}{\left\langle\xi^{3}\left(y-3\left(x-x^{2}\right)-2 x^{3}\right)\right\rangle^{2 b}}
$$

where $E_{y}=\left\{x ;\left|y-3\left(x-x^{2}\right)-2 x^{3}\right| \leq 2|y|\right\}$. We remark that $\left|x^{2}-x\right| \leq \mid 2 x^{3}-$ $3 x^{2}+3 x \mid$, for all $x \in \mathbb{R}$. Hence, $\left|x-x^{2}\right| \leq 3|y|$, for $x \in E_{y}$. The rest of the proof is similar to the proof of Lemma 3.8,
i.) If $|y| \leq 1$, then $E_{y} \subset[-1,2]$. First, we suppose that $|\xi| \leq 1$. Since $s \leq 0, b^{\prime} \leq 0$ and $b>\frac{1}{2}$, it follows that $\phi(\xi, y) \leq c_{(s, b)}$. Next, we assume that $|\xi|>1$. Since $s \in\left[-\frac{3}{4},-\frac{1}{4}\right], b^{\prime} \in\left[-\frac{1}{2}, \frac{s}{3}-\frac{1}{4}\right]$ and $b>\frac{1}{2}$, we obtain that $\phi(\xi, y) \leq c_{(s, b)}$.
ii.) Since $s \in\left[-\frac{3}{4},-\frac{1}{2}\right], b^{\prime} \leq \frac{s}{3}$ and $b>\frac{1}{2}$, we get $\phi(\xi, y) \leq c_{(s, b)}$ for $|y|>1$.

Lemma 3.11. If $s \in\left(-\frac{3}{4},-\frac{1}{2}\right], b^{\prime} \in\left(-\frac{1}{2}, 0\right]$, and $b>\frac{1}{2}$ with $b^{\prime}-b \leq \min \{-s-$ $\left.\frac{3}{2}, \frac{s}{3}-\frac{3}{4}\right\}$, then there exists $c_{\left(s, b, b^{\prime}\right)}>0$ such that

$$
\begin{equation*}
\frac{1}{\left\langle\tau_{1}-\xi_{1}^{3}\right\rangle^{b}}\left(\iint_{B_{2}} \frac{|\xi|^{2(1+s)}\left|\xi \xi_{1}\left(\xi-\xi_{1}\right)\right|^{-2 s} d \xi d \tau}{\langle\xi\rangle^{-2 s}\left\langle\tau+\xi^{3}\right\rangle^{-2 b^{\prime}}\left\langle\tau-\tau_{1}+\left(\xi-\xi_{1}\right)^{3}\right\rangle^{2 b}}\right)^{1 / 2} \leq c_{\left(s, b, b^{\prime}\right)} \tag{3.18}
\end{equation*}
$$

where $B_{2}=B_{2}\left(\xi_{1}, \tau_{1}\right)$ is defined as
$B_{2}=\left\{(\xi, \tau) \in \mathbb{R}^{2} ;\left|\xi_{1}\right| \geq 1,\left|\xi-\xi_{1}\right| \geq 1,\left|\tau-\tau_{1}+\left(\xi-\xi_{1}\right)^{3}\right| \leq\left|\tau_{1}-\xi_{1}^{3}\right|,\left|\tau+\xi^{3}\right| \leq\left|\tau_{1}-\xi_{1}^{3}\right|\right\}$.
Proof. In B_{2} we have that $\left|\tau_{1}+3 \xi \xi_{1}\left(\xi-\xi_{1}\right)+\xi_{1}^{3}\right| \leq 2\left|\tau_{1}-\xi_{1}^{3}\right|$. Since $b>\frac{1}{2}$ and $b^{\prime} \in\left[-\frac{1}{2}, 0\right]$, it follows from (3.9) that it is sufficient to bound

$$
L\left(\tilde{B}_{2}\right)=\frac{1}{\left\langle\tau_{1}-\xi_{1}^{3}\right\rangle^{b}}\left(\int_{\tilde{B}_{2}} \frac{|\xi|^{2(1+s)}\left|\xi \xi_{1}\left(\xi-\xi_{1}\right)\right|^{-2 s} d \xi}{\langle\xi\rangle^{-2 s}\left\langle\tau_{1}+3 \xi \xi_{1}\left(\xi-\xi_{1}\right)+\xi_{1}^{3}\right\rangle^{-2 b^{\prime}}}\right)^{1 / 2}
$$

where $\tilde{B}_{2}=\tilde{B}_{2}\left(\xi_{1}, \tau_{1}\right)=\left\{\xi \in \mathbb{R} ;\left|\xi_{1}\right| \geq 1,\left|\xi-\xi_{1}\right| \geq 1,\left|\tau_{1}+3 \xi \xi_{1}\left(\xi-\xi_{1}\right)+\xi_{1}^{3}\right| \leq\right.$ $\left.2\left|\tau_{1}-\xi^{3}\right|\right\}$. We see that $\tilde{B}_{2}=\tilde{B}_{2,1} \cup \tilde{B}_{2,2}$, where

$$
\begin{aligned}
\tilde{B}_{2,1} & =\left\{\xi \in \tilde{B}_{2} ;\left|2 \xi_{1}^{3}+3 \xi \xi_{1}\left(\xi-\xi_{1}\right)\right| \leq \frac{1}{2}\left|\tau_{1}-\xi_{1}^{3}\right|\right\}, \quad \text { and } \\
\tilde{B}_{2,2} & =\left\{\xi \in \tilde{B}_{2} ; \frac{1}{2}\left|\tau_{1}-\xi_{1}^{3}\right| \leq\left|2 \xi_{1}^{3}+3 \xi \xi_{1}\left(\xi-\xi_{1}\right)\right| \leq 3\left|\tau_{1}-\xi_{1}^{3}\right|\right\}
\end{aligned}
$$

i.) In $\tilde{B}_{2,1}$ we have that

$$
\begin{gathered}
\frac{1}{2}\left|\tau_{1}-\xi_{1}^{3}\right| \leq\left|\tau_{1}+3 \xi \xi_{1}\left(\xi-\xi_{1}\right)+\xi_{1}^{3}\right|, \quad \text { and } \\
|\xi| \leq\left|\xi \xi_{1}\left(\xi-\xi_{1}\right)\right| \leq\left|2 \xi_{1}^{3}+3 \xi \xi_{1}\left(\xi-\xi_{1}\right)\right| \leq \frac{1}{2}\left|\tau_{1}-\xi_{1}^{3}\right|
\end{gathered}
$$

Since $b^{\prime} \leq 0,-\frac{3}{4}<s \leq 0$ and $b^{\prime}-b \leq-s-\frac{3}{2}$, it follows that $L\left(\tilde{B}_{2,1}\right) \leq c_{\left(s, b^{\prime}\right)}$.
ii.) In $\tilde{B}_{2,2}$ we see that

$$
|\xi| \leq\left|\xi \xi_{1}\left(\xi-\xi_{1}\right)\right| \leq\left|2 \xi_{1}^{3}+3 \xi \xi_{1}\left(\xi-\xi_{1}\right)\right| \leq 3\left|\tau_{1}-\xi_{1}^{3}\right|
$$

We define the function $\mu(\xi)=\mu_{\xi_{1}, \tau_{1}}(\xi) \equiv \tau_{1}+3 \xi \xi_{1}\left(\xi-\xi_{1}\right)+\xi_{1}^{3}$.
First, we consider $\tilde{B}_{2,2}^{1}=\left\{\xi \in \tilde{B}_{2,2} ; \frac{|\xi|}{4} \leq\left|\xi_{1}\right| \leq 100|\xi|\right\}$. In this set we have that

$$
\left\langle\tau_{1}-\xi_{1}^{3}\right\rangle \leq\left|\xi_{1}\right|^{3}+2\left|2 \xi_{1}^{3}+3 \xi \xi_{1}\left(\xi-\xi_{1}\right)\right| \leq c|\xi|^{3}
$$

Since $s \in\left[-1,-\frac{1}{2}\right]$, it follows that

$$
\frac{|\xi|^{2(1+s)}}{\langle\xi\rangle^{-2 s}} \leq\langle\xi\rangle^{2+4 s} \leq c_{s}\left\langle\tau_{1}-\xi_{1}^{3}\right\rangle^{\frac{2}{3}+\frac{4}{3} s}
$$

Since $3 \xi_{1}\left(-\xi_{1}^{3}-4 \tau_{1}+4 \mu\right)=\left(6 \xi_{1} \xi-3 \xi_{1}^{2}\right)^{2}$, it follows that $\left|\mu^{\prime}(\xi)\right|=\left|6 \xi_{1} \xi-3 \xi_{1}^{2}\right|=$ $\sqrt{3 \xi_{1}\left(-\xi_{1}^{3}-4 \tau_{1}+4 \mu\right)}$. Then

$$
\begin{aligned}
L\left(\tilde{B}_{2,2}^{1}\right) & \leq \frac{c_{s}}{\left\langle\tau_{1}-\xi_{1}^{3}\right\rangle^{b+\frac{s}{3}-\frac{1}{3}}}\left(\int_{|\mu| \leq 2\left|\tau_{1}-\xi_{1}^{3}\right|} \frac{d \mu}{\sqrt{\left|\xi_{1}\right|\left|-\xi_{1}^{3}-4 \tau_{1}+4 \mu\right|}\langle\mu\rangle^{-2 b^{\prime}}}\right)^{\frac{1}{2}} \\
& =\frac{c_{s}\left\langle\tau_{1}-\xi_{1}^{3}\right\rangle^{-b-\frac{s}{3}+\frac{1}{3}}}{\left|\xi_{1}\right|^{\frac{1}{4}}}\left(\int_{|\mu| \leq 2\left|\tau_{1}-\xi_{1}^{3}\right|} \frac{d \mu}{\sqrt{\left|\xi_{1}^{3} / 4+\tau_{1}-\mu\right|}\langle\mu\rangle^{2\left(1-\left(1+b^{\prime}\right)\right)}}\right)^{\frac{1}{2}} \\
& \leq c_{\left(s, b^{\prime}\right)} \frac{\left\langle\tau_{1}-\xi_{1}^{3}\right\rangle^{-b-\frac{s}{3}+b^{\prime}+\frac{5}{6}}}{\left|\xi_{1}\right|^{\frac{1}{4}}\left\langle\xi_{1}^{3}+4 \tau_{1}\right\rangle^{\frac{1}{4}}} \leq c_{\left(s, b^{\prime}\right)} \frac{\left\langle\tau_{1}-\xi_{1}^{3}\right\rangle^{-b-\frac{s}{3}+b^{\prime}+\frac{5}{6}-\frac{1}{12}}}{\left\langle\xi_{1}^{3}+4 \tau_{1}\right\rangle^{\frac{1}{4}}} \\
& \leq c_{\left(s, b^{\prime}\right)}\left\langle\tau_{1}-\xi_{1}^{3}\right\rangle^{-b-\frac{s}{3}+b^{\prime}+\frac{3}{4}} \leq c_{\left(s, b^{\prime}\right)}
\end{aligned}
$$

where in the second inequality above we have used (2.11) in [13], and $b^{\prime}>-\frac{1}{2}$; the last inequality above is a consequence of the fact that $b^{\prime}-b \leq \frac{s}{3}-\frac{3}{4}$.
Secondly, we consider $\tilde{B}_{2,2}^{2}=\left\{\xi \in \tilde{B}_{2,2} ; 1 \leq\left|\xi_{1}\right| \leq \frac{|\xi|}{4}\right\}$. In this set we have

$$
\left\langle\tau_{1}-\xi_{1}^{3}\right\rangle \leq c|\xi|^{3} \quad \text { and } \quad \frac{|\xi|^{2(1+s)}}{\langle\xi\rangle^{-2 s}} \leq c_{s}\left\langle\tau_{1}-\xi_{1}^{3}\right\rangle^{\frac{2}{3}+\frac{4}{3} s}
$$

Since $s \in\left[-1,-\frac{1}{2}\right]$ and $b^{\prime}>-\frac{1}{2}$, it follows that

$$
L\left(\tilde{B}_{2,2}^{2}\right) \leq c_{\left(s, b^{\prime}\right)} \frac{\left\langle\tau_{1}-\xi_{1}^{3}\right\rangle^{-b-\frac{s}{3}+b^{\prime}+\frac{5}{6}}}{\left|\xi_{1}\right|^{\frac{1}{4}}\left\langle\xi_{1}^{3}+4 \tau_{1}\right\rangle^{\frac{1}{4}}} .
$$

If $b^{\prime}-b-\frac{s}{3}+\frac{5}{6} \leq 0$, then $L\left(\tilde{B}_{2,2}^{2}\right) \leq c_{\left(s, b^{\prime}\right)}$. Thus, we suppose that $b^{\prime}-b-\frac{s}{3}+\frac{5}{6} \geq 0$.
Now, we make $\tau_{1}=\xi_{1}^{3}(z-1) / 4$. Hence

$$
L\left(\tilde{B}_{2,2}^{2}\right) \leq c_{\left(s, b^{\prime}\right)} \frac{\left\langle\xi_{1}^{3}\left(\frac{z-5}{4}\right)\right\rangle^{-b-\frac{s}{3}+b^{\prime}+\frac{5}{6}}}{\left|\xi_{1}\right|^{\frac{1}{4}}\left\langle\xi_{1}^{3} z\right\rangle^{\frac{1}{4}}}
$$

Suppose first that $|z|<1$. Then

$$
L\left(\tilde{B}_{2,2}^{2}\right) \leq c_{\left(s, b, b^{\prime}\right)} \frac{\left\langle\xi_{1}^{3}\right\rangle^{b^{\prime}-b-\frac{s}{3}+\frac{5}{6}}}{\left|\xi_{1}\right|^{\frac{1}{4}}} \leq c_{\left(s, b, b^{\prime}\right)}\left|\xi_{1}\right|^{3\left(b^{\prime}-b-\frac{s}{3}+\frac{5}{6}\right)-\frac{1}{4}} \leq c_{\left(s, b, b^{\prime}\right)}
$$

where in the last inequality we have used the fact that $b^{\prime}-b \leq \frac{s}{3}-\frac{3}{4}$.
Now assume that $|z| \geq 1$. We see that

$$
L\left(\tilde{B}_{2,2}^{2}\right) \leq c_{\left(s, b, b^{\prime}\right)} \frac{\left\langle\xi_{1}^{3}(z-5)\right\rangle^{b^{\prime}-b-\frac{s}{3}+\frac{5}{6}}}{\left\langle\xi_{1}^{3} z\right\rangle^{\frac{1}{4}}} \leq c_{\left(s, b, b^{\prime}\right)}\left\langle\xi_{1}^{3} z\right\rangle^{b^{\prime}-b-\frac{s}{3}+\frac{7}{12}} \leq c_{\left(s, b, b^{\prime}\right)}
$$

where the last inequality is a consequence of $b^{\prime}-b \leq \frac{s}{3}-\frac{3}{4}$.
Finally, we consider the set $\tilde{B}_{2,2}^{3}=\left\{\xi \in \tilde{B}_{2,2} ; 100|\xi| \leq\left|\xi_{1}\right|\right\}$. In $\tilde{B}_{2,2}^{3}$ we have

$$
\left\langle\tau_{1}-\xi_{1}^{3}\right\rangle \leq\left|\xi_{1}\right|^{3}+2\left|2 \xi_{1}^{3}+3 \xi \xi_{1}\left(\xi-\xi_{1}\right)\right| \leq c\left|\xi_{1}\right|^{3}
$$

and $\left|\mu^{\prime}(\xi)\right|=\left|6 \xi_{1}\left(\xi-\xi_{1}\right)+3 \xi_{1}^{2}\right| \geq\left(\frac{3 \times 99}{50}-3\right) \xi_{1}^{2} \geq 2 \xi_{1}^{2}$. Moreover, the fact that $s \in\left[-1,-\frac{1}{2}\right]$ implies that

$$
\frac{|\xi|^{2(1+s)}}{\langle\xi\rangle^{-2 s}} \leq\langle\xi\rangle^{2+4 s} \leq 1
$$

Then

$$
\begin{aligned}
L\left(\tilde{B}_{2,2}^{3}\right) & \leq \frac{c_{s}}{\left\langle\tau_{1}-\xi_{1}^{3}\right\rangle^{b+s}\left|\xi_{1}\right|}\left(\int_{\tilde{B}_{2,2}^{3}} \frac{\left|\mu^{\prime}(\xi)\right| d \xi}{\langle\mu(\xi)\rangle^{-2 b^{\prime}}}\right)^{\frac{1}{2}} \\
& \leq \frac{c_{s}}{\left\langle\tau_{1}-\xi_{1}^{3}\right\rangle^{b+s+\frac{1}{3}}}\left(\int_{|\mu| \leq 2\left|\tau_{1}-\xi_{1}^{3}\right|} \frac{d \mu}{\langle\mu\rangle^{-2 b^{\prime}}}\right)^{\frac{1}{2}} \leq c_{\left(s, b^{\prime}\right)}
\end{aligned}
$$

where in the last inequality we have used $b^{\prime}>-\frac{1}{2}, b^{\prime}-b \leq \frac{s}{3}-\frac{3}{4}$ and $s>-\frac{3}{4}$.
Remark 3.3. It is not difficult to see that $\min \left\{-s-\frac{3}{2}, \frac{s}{3}-\frac{3}{4}\right\} \leq \min \left\{-s-\frac{3}{2}, s-\frac{1}{6}\right\}$, for $s \geq-\frac{7}{8}$.

The following proposition is the main result of this subsection.
Proposition 3.2. Given $s>-\frac{3}{4}$, there exist $b^{\prime} \in\left(-\frac{1}{2}, 0\right)$ and $\epsilon_{s}>0$ such that for any $b \in\left(\frac{1}{2}, b^{\prime}+1\right]$ with $b^{\prime}+1-b \leq \epsilon_{s}$

$$
\begin{align*}
\left\|(v v)_{x}\right\|_{X_{s, b^{\prime}}^{1}} & \leq c_{\left(s, b, b^{\prime}\right)}\|v\|_{X_{s, b}^{-1}}^{2}, \tag{3.19}\\
\left\|(u u)_{x}\right\|_{X_{s, b^{\prime}}^{-1}} & \leq c_{\left(s, b, b^{\prime}\right)}\|u\|_{X_{s, b}^{1}}^{2}, \tag{3.20}\\
\left\|(u v)_{x}\right\|_{X_{s, b^{\prime}}^{1}} & \leq c_{\left(s, b, b^{\prime}\right)}\|u\|_{X_{s, b}^{1}}\|v\|_{X_{s, b}^{-1}}, \tag{3.21}\\
\left\|(u v)_{x}\right\|_{X_{s, b^{\prime}}^{-1}} & \leq c_{\left(s, b, b^{\prime}\right)}\|u\|_{X_{s, b}^{1}}\|v\|_{X_{s, b}^{-1}}, \tag{3.22}
\end{align*}
$$

where $c_{\left(s, b, b^{\prime}\right)}$ is a positive constant depending on s, b, and b^{\prime}.
Proof. Similar to the proof of Corollary 2.7 in [13. Here, we use Lemmas 3.4 3.6 to prove (3.19) and (3.20) ; the positive number ϵ_{s} is given by

$$
\epsilon_{s}= \begin{cases}\min \left\{-s-\frac{1}{2}, s+\frac{5}{6}\right\}, & s \in\left(-\frac{3}{4},-\frac{1}{2}\right) \\ \frac{1}{4}, \quad s \geq 0, & \\ \min \left\{-s^{\prime}-\frac{1}{2}, s^{\prime}+\frac{5}{6}\right\}, & s \in\left[-\frac{1}{2}, 0\right)\end{cases}
$$

where s^{\prime} is any fixed number in the interval $\left(-\frac{3}{4},-\frac{1}{2}\right)$.
Lemmas 3.7 3.11 are used to prove (3.21) and (3.22). Now, we will sketch a proof of (3.21). We denote by f and g the functions given by $f(\xi, \tau):=\left\langle\tau+\xi^{3}\right\rangle^{b}\langle\xi\rangle^{s} \hat{u}(\xi, \tau)$, and $g(\xi, \tau):=\left\langle\tau-\xi^{3}\right\rangle^{b}\langle\xi\rangle^{s} \hat{v}(\xi, \tau)$. Then $\|f\|_{L_{\xi}^{2} L_{\tau}^{2}}=\|u\|_{X_{s, b}^{1}}$, and $\|g\|_{L_{\xi}^{2} L_{\tau}^{2}}=\|v\|_{X_{s, b}^{-1}}$. The case $s \geq 0$ follows from Lemma 3.7 and from the inequality $\langle\xi\rangle^{s} \leq\left\langle\xi_{1}\right\rangle^{s}\left\langle\xi-\xi_{1}\right\rangle^{s}$. Suppose now that $-\frac{3}{4}<s<-\frac{1}{2}$. Then

$$
\left\|(u v)_{x}\right\|_{X_{s, b^{\prime}}^{1}} \leq c_{(s, b)}\|u\|_{X_{s, b}^{1}}\|v\|_{X_{s, b}^{-1}}+c_{s} \sum_{j=1}^{4}\left\|I_{j}\right\|_{L_{\xi}^{2} L_{\tau}^{2}}
$$

where the first term on the right-hand side of the last inequality corresponds to the case when $\left|\xi_{1}\right| \leq 1$ or $\left|\xi-\xi_{1}\right| \leq 1$ (which reduces to the case $s=0$), and

$$
I_{j}:=\frac{|\xi|}{\left\langle\tau+\xi^{3}\right\rangle^{-b^{\prime}}\langle\xi\rangle^{-s}} \iint_{C_{j}} \frac{\left|f\left(\xi_{1}, \tau_{1}\right)\right|\left|g\left(\xi-\xi_{1}, \tau-\tau_{1}\right)\right|\left|\xi_{1}\left(\xi-\xi_{1}\right)\right|^{-s} d \xi_{1} d \tau_{1}}{\left\langle\tau_{1}+\xi_{1}^{3}\right\rangle^{b}\left\langle\left(\tau-\tau_{1}\right)-\left(\xi-\xi_{1}\right)^{3}\right\rangle^{b}},
$$

where

$$
\begin{aligned}
C_{1}= & \left\{\left(\xi_{1}, \tau_{1}\right) ;\left|\xi_{1}\right| \geq 1,\left|\xi-\xi_{1}\right| \geq 1,\left|\left(\tau-\tau_{1}\right)-\left(\xi-\xi_{1}\right)^{3}\right| \leq\left|\tau_{1}+\xi_{1}^{3}\right| \leq\left|\tau+\xi^{3}\right|\right\} \\
C_{2}= & \left\{\left(\xi_{1}, \tau_{1}\right) ;\left|\xi_{1}\right| \geq 1,\left|\xi-\xi_{1}\right| \geq 1,\left|\left(\tau-\tau_{1}\right)-\left(\xi-\xi_{1}\right)^{3}\right| \leq\left|\tau_{1}+\xi_{1}^{3}\right|\right. \\
& \left.\left|\tau+\xi^{3}\right| \leq\left|\tau_{1}+\xi_{1}^{3}\right|\right\} \\
C_{3}= & \left\{\left(\xi_{1}, \tau_{1}\right) ;\left|\xi_{1}\right| \geq 1,\left|\xi-\xi_{1}\right| \geq 1,\left|\tau_{1}+\xi_{1}^{3}\right| \leq\left|\left(\tau-\tau_{1}\right)-\left(\xi-\xi_{1}\right)^{3}\right| \leq\left|\tau+\xi^{3}\right|\right\} \\
C_{4}= & \left\{\left(\xi_{1}, \tau_{1}\right) ;\left|\xi_{1}\right| \geq 1,\left|\xi-\xi_{1}\right| \geq 1,\left|\tau_{1}+\xi_{1}^{3}\right| \leq\left|\left(\tau-\tau_{1}\right)-\left(\xi-\xi_{1}\right)^{3}\right|\right. \\
& \left.\left|\left(\tau-\tau_{1}\right)-\left(\xi-\xi_{1}\right)^{3}\right| \geq\left|\tau+\xi^{3}\right|\right\}
\end{aligned}
$$

The result now follows from Lemmas 3.8]3.11. The case $s \in\left[-\frac{1}{2}, 0\right)$ follows from the last case and from the inequality $\langle\xi\rangle^{s-s^{\prime}}\left|\xi_{1}\left(\xi-\xi_{1}\right)\right|^{s^{\prime}-s} \leq c$, which holds for $\left|\xi_{1}\right| \geq 1$ and $\left|\xi-\xi_{1}\right| \geq 1$, where s^{\prime} is any fixed number belonging to $\left(-\frac{3}{4},-\frac{1}{2}\right)$. Then

$$
\epsilon_{s}= \begin{cases}\min \left\{-s-\frac{1}{2}, \frac{s}{3}+\frac{1}{4}\right\}, & s \in\left(-\frac{3}{4},-\frac{1}{2}\right) \\ \frac{1}{2}, \quad s \geq 0, \\ \min \left\{-s^{\prime}-\frac{1}{2}, \frac{s^{\prime}}{3}+\frac{1}{4}\right\}, & s \in\left[-\frac{1}{2}, 0\right)\end{cases}
$$

Remark 3.4. i.) Suppose $a \in \mathbb{R} \backslash\{0\}$. By making similar calculations as in the proof of Proposition 3.1, it follows that Proposition 3.2 still holds if we replace the super-indices 1 by a and -1 by $-a$ and the constant $c_{\left(s, b, b^{\prime}\right)}$ by $c_{\left(a, s, b, b^{\prime}\right)}$.
ii.) Consider the bilinear estimate, $\left\|(u v)_{x}\right\|_{X_{s, b^{\prime}}^{-1}} \leq c_{\left(s, b, b^{\prime}\right)}\|u\|_{X_{s, b}^{-1}}\|v\|_{X_{s, b}^{-1}}$, of Kenig, Ponce, and Vega [13. In the case $\left|\xi_{1}\right| \geq 1$ and $\left|\xi-\xi_{1}\right| \geq 1$, by symmetry it is possible to assume that $\left|\tau-\tau_{1}-\left(\xi-\xi_{1}\right)^{3}\right| \leq\left|\tau_{1}-\xi_{1}^{3}\right|$ (see the proof of Theorem 2.2-13), and then we need to consider only two regions of integration A and B (see Lemmas 2.5-[13] and 2.6-[13] respectively). We note, however, that in the proof of (3.21) and (3.22) there is no such symmetry to assume and for this reason the four regions of integration C_{1}, \ldots, C_{4} (and Lemmas 3.8 3.11) were considered.
3.4. Local Well-Posedness to the Gear-Grimshaw System. From now on we consider a cut-off function $\psi \in C^{\infty}$, such that $0 \leq \psi(t) \leq 1$ and

$$
\psi(t)= \begin{cases}1 & \text { if }|t| \leq 1 \\ 0 & \text { if }|t| \geq 2\end{cases}
$$

We define $\psi_{T}(t) \equiv \psi(t / T)$. To prove Theorem 3.1 we need the following result.
Proposition 3.3. Let $s \in \mathbb{R},-\frac{1}{2}<b^{\prime} \leq 0 \leq b \leq b^{\prime}+1, T \in[0,1], a \neq 0$. Then

$$
\begin{align*}
\left\|\psi_{1}(t) U_{a}(t) u_{0}\right\|_{X_{s, b}^{a}} & =c_{(b, \psi)}\left\|u_{0}\right\|_{s} \tag{3.23}\\
\left\|\psi_{T}(t) \int_{0}^{t} U_{a}\left(t-t^{\prime}\right) F\left(t^{\prime}, \cdot\right) d t^{\prime}\right\|_{X_{s, b}^{a}} & \leq c_{\left(b, b^{\prime}, \psi\right)} T^{b^{\prime}+1-b}\|F\|_{X_{s, b^{\prime}}^{a}} \tag{3.24}
\end{align*}
$$

where $\widehat{U_{a}(t) u_{0}}(\xi)=\exp \left\{-i a t \xi^{3}\right\} \hat{u}_{0}(\xi)$.
Proof. (3.23) is obvious. The proof of (3.24) is practically done in 8 .
We now prove the following theorem:
Theorem 3.1. The IVP (3.1) with $r=0$ such that $A=\left(a_{i j}\right) \sim a I$ for some $a \neq 0$ is locally well-posed for data $\left(u_{0}, v_{0}\right) \in H^{s}(\mathbb{R}) \times H^{s}(\mathbb{R})$, $s>-3 / 4$.

Proof. The proof follows from the theory developed by Bourgain [4] and Kenig, Ponce and Vega [13]. Since $A \sim a I$, it follows that $a_{11}=a_{22}=a \neq 0$, and $a_{12}=a_{21}=0$. Let

$$
F(u, v)=b_{1}(u v)_{x}+b_{2} u u_{x}+b_{3} v v_{x}, \quad G(u, v)=b_{4}(u v)_{x}+b_{5} u u_{x}+b_{6} v v_{x}
$$

We will consider (3.1) in its equivalent integral form. Let $U_{-a}(t)$ be the unitary group associated with the linear part of (3.1). We consider

$$
\Phi(u, v)(t)=\left(\Phi_{1}(u, v)(t), \Phi_{2}(u, v)(t)\right)
$$

where

$$
\begin{aligned}
& \Phi_{1}(u, v)(t)=\psi(t) U_{-a}(t) u_{0}-\psi_{T}(t) \int_{0}^{t} U_{-a}\left(t-t^{\prime}\right) F(u, v)\left(t^{\prime}\right) d t^{\prime} \\
& \Phi_{2}(u, v)(t)=\psi(t) U_{-a}(t) v_{0}-\psi_{T}(t) \int_{0}^{t} U_{-a}\left(t-t^{\prime}\right) G(u, v)\left(t^{\prime}\right) d t^{\prime}
\end{aligned}
$$

Let $s>-3 / 4$. Let b, b^{\prime} be two numbers given by Proposition 3.1 such that $\epsilon \equiv b^{\prime}+1-b>0$. We will prove that $\Phi(u, v)$ is a contraction in the following space

$$
X_{s, b, a}^{M}=\left\{(u, v) \in X_{s, b}^{-a} \times X_{s, b}^{-a} ;\|(u, v)\|_{X_{s, b}^{-a} \times X_{s, b}^{-a}} \leq M\right\}
$$

where $\|(u, v)\|_{X_{s, b}^{-a} \times X_{s, b}^{-a}} \equiv\|u\|_{X_{s, b}^{-a}}+\|v\|_{X_{s, b}^{-a}}$. First we will prove that $\Phi: X_{s, b, a}^{M} \mapsto$ $X_{s, b, a}^{M}$. Let $(u, v) \in X_{s, b, a}^{M}$. By using Propositions 3.3, 3.1 and the definitions of $F(u, v)$ and $X_{s, b, a}^{M}$ we get

$$
\begin{aligned}
\left\|\Phi_{1}(u, v)\right\|_{X_{s, b}^{-a}} & \leq C\left\|u_{0}\right\|_{s}+C T^{\epsilon}\|F(u, v)\|_{X_{s, b^{\prime}}^{-a}} \\
& \leq \frac{M}{4}+C T^{\epsilon} M^{2} \leq \frac{M}{2}
\end{aligned}
$$

where we took $M=4 C\left(\left\|u_{0}\right\|_{s}+\left\|v_{0}\right\|_{s}\right)$ and $C T^{\epsilon} M=1 / 4$. In a similar way we have

$$
\left\|\Phi_{2}(u, v)\right\|_{X_{s, b}^{-a}} \leq M / 2
$$

Therefore $\|\Phi(u, v)\|_{X_{s, b}^{-a} \times X_{s, b}^{-a}} \leq M$. A similar argument proves that Φ is a contraction. We conclude the proof by a standard argument.

Remark 3.5. Consider the IVP (3.1) under the hypothesis of Theorem 3.1. By making the scale change of variables $\tilde{u}(t, x) \equiv u\left(t, a^{1 / 3} x\right)$ and $\tilde{v}(t, x) \equiv v\left(t, a^{1 / 3} x\right)$ we can avoid consideration of the modified Bourgain-type spaces $X_{s, b}^{a}$ to prove localwell posedness for data $u_{0}, v_{0} \in H^{s}(\mathbb{R})$ for $s>-3 / 4$.

Remark 3.6. Here, we keep the notations of Section 3.1-(1). Suppose that $r=0$ in system (3.1). Suppose also that $A=\left(a_{i j}\right) \sim \operatorname{diag}\left(\alpha_{+}, \alpha_{-}\right)$, where α_{+}and α_{-} are the eigenvalues of A, with $\alpha_{+}, \alpha_{-} \in \mathbb{R} \backslash\{0\}, \alpha_{+} \neq \alpha_{-}$. Suppose moreover that the formula $\partial_{x}(u(t) v(t))=\partial_{x} u(t) v(t)+u(t) \partial_{x} v(t)$ holds for all $t \in[0, T]$ (this is true for example if $s>1 / 2$, and $u(t), v(t) \in H^{s}(\mathbb{R})$, for all $\left.t \in[0, T]\right)$. Under these assumptions, we will show that it is possible to obtain system (3.2) from system (3.1), with $C_{1}(V) V_{x}$ containing only terms of the form $\left(v_{1} v_{1}\right)_{x},\left(v_{2} v_{2}\right)_{x}$ and $\left(v_{1} v_{2}\right)_{x}$, where $V=\left(v_{1}, v_{2}\right)^{t}$. If $a_{12}=a_{21}=0$, there is nothing to prove. Then, we suppose that $a_{12} \neq 0$; the case $a_{21} \neq 0$ is similar. The matrices T and T^{-1} are given by

$$
T=\left(\begin{array}{cc}
1 & 1 \\
\frac{\alpha_{+}-a_{11}}{a_{12}} & \frac{\alpha_{-}-a_{11}}{a_{12}}
\end{array}\right), \quad T^{-1}=\frac{a_{12}}{\alpha_{+}-\alpha_{-}}\left(\begin{array}{cc}
\frac{a_{11}-\alpha_{-}}{a_{12} a_{11}} & 1 \\
\frac{\alpha_{+}-a_{11}}{a_{12}} & -1
\end{array}\right) .
$$

Then $V=\left(\frac{a_{11}-\alpha_{-}}{\alpha_{+}-\alpha_{-}} u+\frac{a_{12}}{\alpha_{+}-\alpha_{-}} v, \frac{\alpha_{+}-a_{11}}{\alpha_{+}-\alpha_{-}} u-\frac{a_{12}}{\alpha_{+}-\alpha_{-}} v\right)^{t}$. Now, we see that

$$
C_{1}(V) V_{x}=\frac{a_{12}}{\alpha_{+}-\alpha_{-}}\left(\begin{array}{cc}
a v_{1}+b v_{2} & b v_{1}+c v_{2} \\
d v_{1}+e v_{2} & e v_{1}+f v_{2}
\end{array}\right)\binom{\partial_{x} v_{1}}{\partial_{x} v_{2}}
$$

where a, b, c, d, e, f are real constants depending on $b_{k}, k=1, \ldots, 6, a_{i, j}, i, j=1,2$, α_{+}and α_{-}. The result now follows.

Theorem 3.2. The IVP (3.1) with $r=0$ such that $a_{12}=a_{21}=0, a_{11}=-a_{22} \neq 0$ is locally well-posed for data $\left(u_{0}, v_{0}\right) \in H^{s}(\mathbb{R}) \times H^{s}(\mathbb{R})$, $s>-3 / 4$.

Proof. Without loss of generality (see Remark 3.4i.)), we consider the case $a_{11}=$ -1 and $a_{22}=1$. Let

$$
F(u, v)=b_{1}(u v)_{x}+b_{2} u u_{x}+b_{3} v v_{x}, \quad G(u, v)=b_{4}(u v)_{x}+b_{5} u u_{x}+b_{6} v v_{x}
$$

We consider $\Phi(u, v)(t)=\left(\Phi_{1}(u, v)(t), \Phi_{2}(u, v)(t)\right)$, where

$$
\begin{aligned}
& \Phi_{1}(u, v)(t)=\psi(t) U_{1}(t) u_{0}-\psi_{T}(t) \int_{0}^{t} U_{1}\left(t-t^{\prime}\right) F(u, v)\left(t^{\prime}\right) d t^{\prime} \\
& \Phi_{2}(u, v)(t)=\psi(t) U_{-1}(t) v_{0}-\psi_{T}(t) \int_{0}^{t} U_{-1}\left(t-t^{\prime}\right) G(u, v)\left(t^{\prime}\right) d t^{\prime}
\end{aligned}
$$

Let $s>-3 / 4$. Let b, b^{\prime} be two numbers given by Propositions 3.1 and 3.2, with $\epsilon \equiv b^{\prime}+1-b>0$. Proceeding in a similar way as in the proof of Theorem 3.1, using Propositions 3.1 3.3, it follows that $\Phi(u, v)$ is a contraction in the following space

$$
X_{s, b}^{M}=\left\{(u, v) \in X_{s, b}^{1} \times X_{s, b}^{-1} ;\|(u, v)\|_{X_{s, b}^{1} \times X_{s, b}^{-1}} \leq M\right\}
$$

$\|(u, v)\|_{X_{s, b}^{1} \times X_{s, b}^{-1}} \equiv\|u\|_{X_{s, b}^{1}}+\|v\|_{X_{s, b}^{-1}}, M=4 C\left(\left\|u_{0}\right\|_{s}+\left\|v_{0}\right\|_{s}\right)$ and $C T^{\epsilon} M=\frac{1}{4}$.
The following result is an immediate consequence of the last theorem.
Corollary 3.1. Let $s>-\frac{3}{4}$. Suppose that $r=0$ in (3.1). Suppose also that $A=\left(a_{i j}\right) \sim \operatorname{diag}\left(\alpha_{+}, \alpha_{-}\right)$, where α_{+}and α_{-}are the eigenvalues of A with $\alpha_{+}, \alpha_{-} \in$ $\mathbb{R} \backslash\{0\}, \alpha_{+}=-\alpha_{-}$. Then the IVP (3.1) with $r=0$ is LWP for data $u_{0}, v_{0} \in H^{s}(\mathbb{R})$.
3.5. Future Work. Suppose $a, a^{\prime} \in \mathbb{R} \backslash\{0\}$ and $|a| \neq\left|a^{\prime}\right|$. We remark that an interesting problem for a future research is to determine whether or not Proposition 3.2 is still true when we replace the super-indices 1 by a and -1 by a^{\prime}. We point out that this result (in general) is not an immediate consequence of the calculations we did here for proving Propositions 3.1 or 3.2 or from the calculations done in $[13]$ to prove Corollary 2.7-[13]. This result would let us to prove LWP for the Gear-Grimshaw system (3.1) with $r=0$, when $a_{12}=a_{21}=0,\left|a_{11}\right| \neq\left|a_{22}\right|$, and $a_{11}, a_{22} \in \mathbb{R} \backslash\{0\}$. Moreover, if this result is true, we also could obtain LWP for system (3.1) with $r=0$, when $A=\left(a_{i j}\right) \sim \operatorname{diag}\left(\alpha_{+}, \alpha_{-}\right)$, where α_{+}and α_{-}are the eigenvalues of A with $\alpha_{+}, \alpha_{-} \in \mathbb{R} \backslash\{0\},\left|\alpha_{+}\right| \neq\left|\alpha_{-}\right|$.

4. Appendix

Here we prove some properties of $X_{s, b}^{a}$-spaces.
Lemma 4.1. Let $b \geq 0, s \in \mathbb{R}$, and a_{0}, a_{1} as in Lemma 3.1. Then for all $a \neq 0$

$$
\begin{gathered}
X_{s, b}^{a_{0}} \cap X_{s, b}^{a_{1}} \subset X_{s, b}^{a}, \quad \text { and } \\
\|u\|_{X_{s, b}^{a}} \leq c_{\left(a, a_{0}, a_{1}, b\right)}\left(\|u\|_{X_{s, b}^{a_{0}}}+\|u\|_{\left.X_{s, b}^{a_{1}}\right)}\right)
\end{gathered}
$$

First proof. Let v be an element of $X_{s, b}^{a_{0}} \cap X_{s, b}^{a_{1}}$. Then

$$
\|v\|_{X_{s, b}^{a}}^{2}=\sum_{j=1}^{4} \int_{A_{j}}\langle\xi\rangle^{2 s}\left\langle\tau+a \xi^{3}\right\rangle^{2 b}|\hat{v}(\xi, \tau)|^{2} d \xi d \tau=\sum_{j=1}^{4} I_{j},
$$

where

$$
\begin{array}{ll}
A_{1}=\{(\xi, \tau) ; \xi \geq 0, \tau \geq 0\}, & A_{2}=\{(\xi, \tau) ; \xi \leq 0, \tau \leq 0\} \\
A_{3}=\{(\xi, \tau) ; \xi>0, \tau<0\}, & A_{4}=\{(\xi, \tau) ; \xi<0, \tau>0\}
\end{array}
$$

We consider the case $a>0, a_{0}>0$, and $a_{1}<0$; a similar argument works in the other cases. It is not difficult to prove, considering regions A_{1} and A_{2}, that

$$
I_{1}+I_{2} \leq 2\left(1+\frac{a}{a_{0}}\right)^{2 b}\|v\|_{X_{s, b}^{a_{0}}}^{2}
$$

To estimate I_{3} and I_{4} we consider

$$
\begin{aligned}
\left|\tau+a \xi^{3}\right| & \leq\left|\tau+a_{0} \xi^{3}\right|+\left|a_{0} \xi^{3}-\frac{a}{\left|a_{1}\right|} \tau\right|+a\left|\xi^{3}-\frac{1}{\left|a_{1}\right|} \tau\right| \\
& \leq\left|\tau+a_{0} \xi^{3}\right|+\frac{a_{0}+a}{\left|a_{1}\right|}\left|\tau+a_{1} \xi^{3}\right|+\frac{a}{\left|a_{1}\right|}\left|\tau+a_{1} \xi^{3}\right|
\end{aligned}
$$

therefore

$$
I_{3}+I_{4} \leq c_{b}\left(1+\frac{a_{0}+a}{\left|a_{1}\right|}\right)^{2 b}\left(\|v\|_{X_{s, b}}^{2}+\|v\|_{X_{s, b}^{a_{0}}}^{2}\right)
$$

Second proof. We claim that for all $x, \tau \in \mathbb{R}$, we have

$$
\begin{equation*}
\frac{1+|\tau+a x|}{\left(1+\left|\tau+a_{0} x\right|\right)+\left(1+\left|\tau+a_{1} x\right|\right)} \leq\left\langle\frac{a-a_{0}}{a_{1}-a_{0}}\right\rangle . \tag{4.1}
\end{equation*}
$$

We will first prove that for all $\xi \geq 0$ and $t \in \mathbb{R}$,

$$
\begin{equation*}
J(\xi, t) \equiv \frac{\xi+|t+a|}{\left(\xi+\left|t+a_{0}\right|\right)+\left(\xi+\left|t+a_{1}\right|\right)} \leq 1+\frac{\left|a-a_{0}\right|}{\left|a_{1}-a_{0}\right|} \tag{4.2}
\end{equation*}
$$

Since

$$
\xi+|t+a| \leq \xi+\left|t+a_{0}+a-a_{0}\right| \leq \xi+\left|t+a_{0}\right|+\left|a-a_{0}\right|
$$

it follows that

$$
J(\xi, t) \leq 1+\frac{\left|a-a_{0}\right|}{\left(\xi+\left|t+a_{0}\right|\right)+\left(\xi+\left|t+a_{1}\right|\right)} \leq 1+\frac{\left|a-a_{0}\right|}{\left|t+a_{0}\right|+\left|t+a_{1}\right|}
$$

Taking $t=x-\left(a_{0}+a_{1}\right) / 2, c_{0}=\left(a_{1}-a_{0}\right) / 2$ and $x=w c_{0}$, we see that

$$
\frac{1}{\left|t+a_{0}\right|+\left|t+a_{1}\right|}=\frac{1}{\left|x-c_{0}\right|+\left|x+c_{0}\right|} \leq \frac{1}{\left|c_{0}\right|} \frac{1}{|w-1|+|w+1|}
$$

Since the function

$$
f(w)=\frac{1}{|w-1|+|w+1|}= \begin{cases}1 /(2 w) & \text { if } w \geq 1 \\ 1 / 2 & \text { if }-1 \leq w \leq 1 \\ -1 /(2 w) & \text { if } w \leq-1\end{cases}
$$

satisfies $0 \leq f(w) \leq 1 / 2$, (4.2) follows. To prove (4.1) we take $\xi=1 /|x|$ and $t=\tau / x$ into (4.2). Hence

$$
\|u\|_{X_{s, b}^{a}} \leq c_{b}\left\langle\frac{a-a_{0}}{a_{1}-a_{0}}\right\rangle^{b}\left(\|u\|_{X_{s, b}^{a_{0}}}+\|u\|_{X_{s, b}^{a_{1}}}\right)
$$

Thus we can define $X_{s, b}^{a_{0}, a_{1}} \equiv X_{s, b}^{a_{0}} \cap X_{s, b}^{a_{1}}$ with norm given by $\|w\|_{X_{s, b}^{a_{0}, a_{1}}} \equiv$ $\|w\|_{X_{s, b}^{a_{0}}}+\|w\|_{X_{s, b}^{a_{1}}}$, for $b \geq 0, s \in \mathbb{R}$, and $a_{0}, a_{1} \in \mathbb{R} \backslash\{0\}$ such that $a_{0} \neq a_{1}$.

Corollary 4.1. Let $b \geq 0$ and $s \in \mathbb{R}$. Let a_{0}, \ldots, a_{3} be nonzero real numbers such that $a_{0} \neq a_{1}, a_{2} \neq a_{3}$. Then

$$
X^{s, b} \equiv X_{s, b}^{a_{0}} \cap X_{s, b}^{a_{1}}=X_{s, b}^{a_{2}} \cap X_{s, b}^{a_{3}}
$$

Moreover, there exist constants $c_{0} \equiv c_{0}\left(a_{0}, \ldots, a_{3}, b\right), c_{1} \equiv c_{1}\left(a_{0}, \ldots, a_{3}, b\right)>0$, such that

$$
c_{0}\|w\|_{X_{s, b}^{a_{0}, a_{1}}} \leq\|w\|_{X_{s, b}^{a_{2}, a_{3}}} \leq c_{1}\|w\|_{X_{s, b}^{a_{0}, a_{1}}}
$$

Remark 4.1. Suppose $b \geq 0$ and $s \in \mathbb{R}$. If $\varphi \in H^{b}(\mathbb{R})$ and $u_{0} \in H^{s+3 b}(\mathbb{R})$, then $\varphi(t) u_{0}(x) \in \mathcal{X}^{s, b}$.

Acknowledgements. An earlier version of this paper was written while the authors had Post-doctoral positions at IMECC-UNICAMP. The first author wishes to thank David Lannes and Thierry Colin (Université Bordeaux I and CNRS) for their hospitality and very fruitful conversations about Nonlinear Evolution Equations; special thanks also go to Jerry Bona (UIC) for very helpful comments.

References

[1] J. M. Ash, J. Cohen, G. Wang, On strongly interacting internal solitary waves, J. Fourier Anal. Appl. 2 (1996), no. 5, 507-517.
[2] D. Bekiranov, T. Ogawa, G. Ponce, Weak solvability and well-posedness of a coupled Schrödinger-Korteweg de Vries equation for capillary-gravity wave interactions, Proc. Amer. Math. Soc. 125 (1997), no. 10, 2907-2919.
[3] J. L. Bona, G. Ponce, J. C. Saut, M. Tom, A model system for strong interaction between internal solitary waves, Comm. Math. Phys. 143 (1992), no. 2, 287-313.
[4] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation, Geom. Funct. Anal. 3 (1993), no. 3, 209-262.
[5] M. Christ, J. Colliander, T. Tao, Asymptotics, frequency modulation, and low regularity illposedness for canonical defocusing equations, Amer. J. Math. 125 (2003), no. 6, 1235-1293.
[6] X. Feng, Global well-posedness of the initial value problem for the Hirota-Satsuma system, Manuscripta Math. 84 (1994), no. 3-4, 361-378.
[7] J. A. Gear, R. Grimshaw, Weak and strong interactions between internal solitary waves, Stud. Appl. Math. 70 (1984), no. 3, 235-258.
[8] J. Ginibre, Y. Tsutsumi, G. Velo, On the Cauchy problem for the Zakharov system, J. Funct. Anal. 151 (1997), no. 2, 384-436.
[9] P. F. He, Global solutions for a coupled KdV system, J. Partial Differential Equations 2 (1989), no. 1, 16-30.
[10] R. Hirota, J. Satsuma, Soliton solutions of a coupled Korteweg-de Vries equation, Phys. Lett. A 85 (1981), no. 8-9, 407-408.
[11] C. E. Kenig, G. Ponce, L. Vega, Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J. 40 (1991), no. 1, 33-69.
[12] C. E. Kenig, G. Ponce, L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math. 46 (1993), no. 4, 527-620.
[13] C. E. Kenig, G. Ponce, L. Vega, A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc. 9 (1996), no. 2, 573-603.
[14] C. Laurey, The Cauchy problem for a third order nonlinear Schrödinger equation, Nonlinear Anal. 29 (1997), no. 2, 121-158.
[15] F. Linares, M. Panthee, On the Cauchy problem for a coupled system of KdV equations, Commun. Pure Appl. Anal. 3 (2004), no. 3, 417-431.
[16] S. Yu. Sakovich, Coupled KdV equations of Hirota Satsuma type, J. Nonlinear Math. Phys. 6 (1999), no. 3, 255-262.
[17] J. C. Saut, N. Tzvetkov, On a model system for the oblique interaction of internal gravity waves, M2AN Math. Model. Numer. Anal. 34 (2000), no. 2, 501-523.

E-mail address: balvarez@math.u-bordeaux1.fr, balvarez@math.uic.edu
E-mail address: carvajal@ime.unicamp.br

[^0]: ${ }^{1}$ Initially supported by FAPESP/Brazil grant No. 2002/02522-0, and later by CNRS/France.
 ${ }^{2}$ Supported by FAPESP under grant No. 2002/08920-7.
 Date: October 2005.

