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Abstract

In this research, the Cauchy problem of the 3D viscous Boussinesq sys-
tem is studied considering an initial temperature with negative Sobolev
regularity. Precisely, we construct local in time mild solutions to this sys-
tem where the temperature term belongs to Sobolev spaces of negative
order. Our main contribution is to show how the coupled structure of the
Boussinesq system allows us to considerably weaken the regularity in the
temperature term.
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1 Introduction

We consider the incompressible three dimensional Boussinesq system, which
describes the dynamics of a viscous incompressible fluid with heat exchanges
[14, 15]. Mathematicaly, this system couples the Navier-Stokes equations and
the equations of thermodynamics as follows:

∂tu−∆u+ (u · ∇)u+∇P − θe3 = 0,

∂tθ −∆θ + u · ∇θ = 0,

div(u) = 0,

u(0, ·) = u0, θ(0, ·) = θ0.

(1)

Here, u : [0,+∞) × R3 → R3 is the velocity of the fluid, P : [0,+∞) × R3 →
R is the pressure and θ : [0,+∞) × R3 → R is the temperature. Moreover,
e3 = (0, 0, 1) is the third orthonormal vector in the canonical basis of R3, while
u0 : R3 → R3 and θ0 : R3 → R denote the initial (divergence-free) velocity and
the initial temperature respectively. With a minor loss of generality, we have
set all the physical constants equal to one.
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The Boussinesq system (1) was studied in the Lp setting in [2] and weak solu-
tions were constructed in [9, 13]. In recent years this model have taken interest
in the fluids mechanics community. On the one hand, in view of its proximity
to the incompressible axisymmetric Euler system with swirl, the partially vis-
cous Boussinesq system in dimension two is of great interest, it was addressed
for example in [10, 11, 16]. On the other hand, in [5] the authors show that
the classical results for the standard Navier-Stokes system remain true for the
Boussinesq system even considering a null viscosity for the temperature term:∂tu−∆u+ (u · ∇)u+∇P − θe3 = 0, div(u) = 0,

∂tθ + u · ∇θ = 0,
(2)

and considering compatible regularity conditions for both the initial velocity and
the initial temperature. Precisely, in Theorem 1.1 of the paper [5], global in time
weak solutions are constructed under the well-known initial condition for the
velocity u0 ∈ L2(R3), and the initial condition for the temperature θ0 ∈ Lp(R3),
6/5 < p ≤ 2.

Concerning the case of initial data belonging to Sobolev spaces, and recalling
the embedding Lp(R3) ⊂ Ḣ−s(R3), with 6/5 < p ≤ 2 and 0 ≤ s < 1, this last
condition on the initial temperature suggests to look for solutions of the system
(1) with θ0 ∈ Ḣ−s(R3).

In this article, we address the stronger setting of mild solutions and we will show
the existence and uniqueness of mild solutions for the three dimensional viscous
Boussinesq system (1) with initial temperature in Sobolev spaces of negative
order. In this context, we show that the coupled structure of the system (1)
allows us to weaken the regularity in the temperature term.

Recall that mild solutions to the Boussinesq system (1) solve the following
coupled system of integral equations:

u(t, ·) = et∆u0 −
∫ t

0

e(t−τ)∆P ((u · ∇)u) (τ, ·)dτ

+

∫ t

0

e(t−τ)∆P (θe3) (τ, ·)dτ,
(3)

θ(t, ·) = et∆θ0 −
∫ t

0

e(t−τ)∆u · ∇θ(τ, ·)dτ, (4)

where, for the heat kernel ht we denote et∆φ = ht ∗ φ, and P stands for the
Leray’s projector.

Our key remark is the fact that expression (3) formally verifies the equation

∂tu−∆u+ (u · ∇)u+∇P = θe3, div(u) = 0,

where θe3 acts as a source term of the classical Navier-Stokes equations. Fujita
and Kato’s theory of mild solutions in Sobolev spaces [8],[1, Chapter 5.2],[12,
Chapter 7.4] shows that this equation can be studied by considering initial
velocities u0 ∈ Hr(R3) with r ≥ 1/2, and source terms belonging to the space
Ḣr−1(R3). In particular, the limit value r = 1/2 suggests the minimal regularity
condition θ ∈ Ḣ−1/2(R3).
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Main results. Coming back to the Boussinesq system (1), and motivated
by this last remark, for r ≥ 1/2 we shall assume that u0 ∈ Hr(R3), with
div(u0) = 0, and for 0 ≤ s ≤ 1/2 we shall assume that θ0 ∈ Ḣ−s(R3). We thus
look for conditions on r and s to prove the existence of local in time solutions.

In order to simplify the statement of our next theorem, we will say that the
system (1) is locally solved in the space Hr(R3) × Ḣ−s(R3) if for any initial
data (u0, θ0) ∈ Hr(R3) × Ḣ−s(R3) (with div(u0) = 0) there exists a time
T0 > 0, depending on u0 and θ0, and there exists a couple

u ∈ L∞([0, T0], H
r(R3)) ∩ L2([0, T0], Ḣ

r+1(R3)),

θ ∈ L∞([0, T0], Ḣ
−s(R3)) ∩ L2([0, T0], Ḣ

−s+1(R3)),

which is a solution to (3)-(4). In this setting, our main result reads as follows:

Theorem 1 Let 1/2 ≤ r < 2 and let 0 ≤ s ≤ 1/2.

1. If s < 1/2 < r and
1 ≤ s+ r < 2, (5)

then the Boussinesq system (3)-(4) is locally solved in the space Hr(R3)×
Ḣ−s(R3). Moreover, the obtained solution is the unique one.

2. In the limit case s = 1/2, and for 1/2 ≤ r ≤ 1, the Boussinesq system
(3)-(4) is locally solved in the space Hr(R3)× Ḣ−1/2(R3).

The following comments are in order. Existence of local in time solutions to (3)-
(4) will be obtained by a fixed point argument joint with some sharp regularizing
effects of the heat kernel. However, equation (4) imposes new defies. On the one
hand, we deal with Sobolev spaces of negative order and, on the other hand, the
term θu is more difficult to treat due the fact θ and u have different regularity
properties. To overcome these difficulties, we have considered two cases of the
parameters r and s.

In the first point of Theorem 1, we consider the case s < 1/2 < r with the addi-
tional relationship (5). Observe that this relationship constraints s in function
of r. Precisely, by the lower bound in (5) we have

−s ≤ r − 1, (6)

and then −s in contained in the interval (−1/2, r − 1). This fact shows us how
much the regularity of the initial temperature θ0 ∈ Ḣ−s(R3) can be weakened
respect to the given regularity of the initial velocity u0 ∈ Hr(R3). On the other
hand, the upper bound in (5) constraints the parameter r to r < 2. We thus
observe that the given regularity for initial velocity u0 cannot be arbitrary high,
when initial temperature with negative regularity is considered.

It is interesting to observe that the inequality (6) appears inverted in the recent
paper [7] on the micropolar system, the reason is the different nature of the
coupled part in the equation for ∂tu. While the coupled part in the Boussinesq
system is −θe3, the coupled part in the micropolar system is ∇∧ ω, where ω is
the coupled variable.
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Getting back to (6), we observe that when r goes to 1/2 then −s tends to
the limit value −1/2. Thus, in the second point of Theorem 1, we focus on the
(more delicate) case of minimal regularity conditions for the initial temperature:
θ0 ∈ Ḣ−1/2(R3), and we show the existence of a local solution to (3)-(4) where
the initial velocity u0 verifies u0 ∈ Hr(R3) with 1/2 ≤ r ≤ 1.

In the range 1/2 ≤ r ≤ 1, the limit points r = 1/2 and r = 1 are of particular
interest. On the one hand, when r = 1/2 we deal with the limit case of the
relationship (6). On the other hand, the value r = 1 seems to be the maximal
one for which we can prove the local-well posedness of (3)-(4) in Hr(R3) ×
Ḣ−1/2(R3).

When s = 1/2, the uniqueness of solutions seems more complicate to treat. In
fact, the methods used in the previous case when s < 1/2 are not longer valid
when studying the term θu in equation (4) with θ ∈ Ḣ−1/2(R3). As pointed out
in [3], this particular term makes more difficult to study the uniqueness issue of
solutions to the Boussinesq system, and additional regularity conditions on the
temperature term are required to obtain partial uniqueness results.

Following these ideas, we are able to obtain the next (partial) uniqueness result.

Proposition 1.1 Withing the setting of the second point in Theorem 1, assume
that we have two solutions (u1, θ1) and (u2, θ2) to the Boussinesq system (1)
associated with the same initial data, and such that

ui ∈ L∞([0, T0], H
1/2(R3)) ∩ L2([0, T0], Ḣ

3/2(R3)),

θi ∈ L∞([0, T0], Ḣ
−1/2(R3)) ∩ L2([0, T0], Ḣ

1/2 ∩ Ẇ 1,3(R3)),

for i = 1, 2. Then (u1, θ1) = (u2, θ2).

As noticed, uniqueness of solutions is ensured under the additional regularity
condition θ ∈ L2

t Ẇ
1,3
x . Moreover, this result also holds for velocities u belong-

ing to the space L∞
t Hr

x ∩ L2
t Ḣ

r+1
x with 1/2 < r ≤ 1, due to the continuous

embedding L∞
t Hr

x ∩ L2
t Ḣ

r+1
x ⊂ L∞

t H
1/2
x ∩ L2

t Ḣ
3/2
x .

Related works. Here we make a short discussion on some previous related
works. To this end, some mentioned results are not stated in their rigorous form,
since it requires a considerably set of highly technical definition and notation.
But, we shall emphasize their main features concerning the regularity of the
spaces involved. For all the technical details we refer to the articles cited below.

Previous studies on the Boussinesq systems (1) and (2) in functional spaces of
negative or null regularity were done in the framework of Besov spaces, generally
defined on the space Rn with n ≥ 2. For our purposes, we shall only focus on
the case n = 3. In [6], the authors work with (1) and essentially consider initial
velocities u0 ∈ B−1

∞,1(R3) and initial temperatures θ0 ∈ B−1
3/2,1(R

3). Then, it is

proven that small data yields local in time solutions to the system (1), which in
essence verify

(u, θ) ∈ L∞
t (B−1

∞,1)x ∩ L2
t (B

0
∞,1)x × L∞

t (B−1
3/2,1)x ∩ L2

t (B
0
3/2,1)x.

The main objective of this work is to perform sharp estimates on the coupling
term u · ∇θ to obtain the local well-posedness in low regularity Besov spaces
with index −1.
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On the other hand, in [5, Theorem 1.3] the authors consider the Boussinesq
system (2). They also consider any initial data u0, θ0 ∈ Ḃ0

3,1(R3) to construct
local in time solutions

(u, θ) ∈ L∞
t (Ḃ0

3,1)x ∩ L1
t (Ḃ

2
3,1)x × L∞

t (Ḃ0
3,1)x.

By scaling properties, we have that the space Ḃ0
3,1(R3) is embedded in L3(R3),

which is the well-known scale invariant space for the first equation in (2) involv-
ing the velocity u.

Compared with these results, the main difference with our work bases on the
fact that we exploit the coupled structure of the system (1) (mainly the crossed
term u ·∇θ) and we use some sharp smoothing effects of the heat kernel (see for
instance the third point of Lemma 2.2 and Lemma 2.3 below) to consider differ-
ent regularity properties for u and θ, principally with a considerably weakened
regularity on the temperature term θ.

Open questions and future research. Our first natural question is to look
for if Theorem 1 still holds for the null viscosity system (2). This is not a trivial
fact due to the loss of smoothing effects in equation involving the temperature
term θ.

On the other hand, we emphasize that in contrast to the classical Navier-Stokes
equations (when θ ≡ 0), global in time mild solutions in Sobolev spaces arising
from small initial data (controlled by universal constants) seem not to be a trivial
issue for both Boussinesq systems (1) and (2). In fact, in our case mild solutions
to (1) are constructed by an iterative fixed point argument given in Lemma 3.1
below, and the main difficulty focuses on the linear term in equation (3): in

the required estimate
∥∥∥∫ t

0
e(t−τ)∆P(θe3)(τ, ·)dτ

∥∥∥
Hr

≤ CL∥θ∥Ḣ−s , the continuity

constant CL > 0 depends on the time T . However, due to the first technical
constraint in (8), this constant must be small enough independent of the size
of initial data, and this fact blocks to apply classical arguments to construct
global in time solutions.

Coming back to [5], Theorem 1.4 yields that local in time solutions to (2),
obtained in Theorem 1.3 from initial data u0, θ0 ∈ Ḃ0

3,1(R3), can be extended to
global ones under the supplementary hypothesis u0 ∈ L3,∞(R3), θ0 ∈ L1(R3),
and with smallness conditions on the quantity ∥u0∥L3,∞ + ∥θ0∥L1 , which are
given by universal constants. In future research, we aim to adapt this method
to our framework. Nevertheless, this does not seem to be trivial, principally
when handling with Sobolev spaces of negative regularity for the temperature
term θ.

Finally, in further research we also aim to understood the optimality of the
relationship (5) involving the parameters r and s. Precisely, we aim to study
some ill-posedness issues in the complementary cases s+ r < 1 or 2 ≤ s+ r.

Notation and organization of the article The Fourier transform (in the

spatial variable) of a function f is denoted by f̂ , while F−1
x (f) stands for the

inverse Fourier transform. Moreover, in our estimates we shall use a generic
constant C > 0 which may change from one line to another.

In Section 2 we collect all the technical lemmas which we shall use later. Section
3 is devoted to prove Theorem 1, while in Section 4 we give a proof of Proposition
1.1.
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2 Preliminaries

In this section, we summarize some known estimates concerning smoothing ef-
fects of the heat kernel. For the sake of completeness, in some cases we give a
short proof of these statements.

Lemma 2.1 Let s1 ∈ R and s2 ≥ 0 be two real numbers. There exists a constant
C > 0, which depends on s1 and s2, such that for any t > 0 we have:

∥et∆f∥Hs1+s2 ≤ C(1 + t−
s2
2 )∥f∥Hs1 .

The proof of this lemma is straightforward. It follows from direct computations

in the Fourier variable and the well-know identity êt∆f(ξ) = e−t|ξ|2 f̂(ξ).

Lemma 2.2 Let f ∈ L2([0,+∞), L2(R3) ∩ Ḣs1(R3)), with s1 ∈ R. Define the
function

F (t, ·) =
∫ t

0

e(t−τ)∆f(τ, ·)dτ.

Then, the following estimates hold:

1. For all t > 0 we have ∥∇F (t, ·)∥L2 ≤ C∥f∥L2
tL

2
x
.

2. We have ∥∆F∥L2
tL

2
x
≤ C∥f∥L2

tL
2
x
.

3. Let s1 ∈ R and 1 < s2 < 2. Define p = 2
s2−1 , which verifies 2 < p < +∞.

Then we have the estimate:

∥F∥
Lp

t Ḣ
s1+s2
x

≤ C ∥f∥L2
t Ḣ

s1
x
.

Proof. The first point and the second point are well-known facts, see [12,
Lemma 7.2] for a proof. The third point follows from the previous ones: we
write

∥F∥
Lp

t Ḣ
s1+s2
x

=

∥∥∥∥∫ t

0

e(t−τ)∆(−∆)(s1+s2)/2f(τ, ·)dτ
∥∥∥∥
Lp

tL
2
x

=

∥∥∥∥∫ t

0

e(t−τ)∆(−∆)
s1
2 f(τ, ·)dτ

∥∥∥∥
Lp

t Ḣ
s2
x

.

For simplicity, denote G =
∫ t

0
e(t−τ)∆g(τ, ·)dτ , with g = (−∆)

s1
2 f . We apply

interpolation inequalities in homogeneous Sobolev spaces with the parameter
σ = −s2 + 2 ∈ (0, 1), hence we have 1− σ = s2 − 1. Then, we use the first and
second point stated above to get

∥G∥Lp
t Ḣ

s2
x

≤ C ∥G∥σ
L∞

t Ḣ1
x
∥G∥1−σ

L2
t Ḣ

2
x

≤ C ∥g∥L2
tL

2
x
= C ∥f∥L2

t Ḣ
s1
x
. ■

Our last lemma is essentially proven in [1, Theorem 5.4]. However, we will state
it in a more general version adapted to our needs in this article.
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Lemma 2.3 Let s1 ∈ R and let s1 < s2 < s1 + 1. Define p = 2
s2−s1

, which
verifies 2 < p < +∞.

For all ε > 0 there exists a quantity Rε > 0 such that∥∥et∆f∥∥
Lp

t Ḣ
s2
x

≤ ε

2
+ (R2

εT )
1/p∥f∥Ḣs1 .

Proof. For a parameter κ > 0 (which will be set later) we write∥∥et∆f∥∥
Lp

t Ḣ
s2
x

≤
∥∥∥F−1

x

(
e−t|ξ|21|ξ|≥κ(ξ) f̂

)∥∥∥
Lp

t Ḣ
s2
x

+
∥∥∥F−1

x

(
e−t|ξ|21|ξ|<κ(ξ) f̂

)∥∥∥
Lp

t Ḣ
s2
x

.

In order to estimate the first term, recall the the identity p = 2
s2−s1

and the
relationship s1 < s2 < s1 + 1. Using interpolation inequalities in homogeneous
Sobolev spaces with σ = s1 + 1− s2 ∈ (0, 1) and 1− σ = s2 − s1, we have∥∥∥F−1

x

(
e−t|ξ|21|ξ|≥κ(ξ) f̂

)∥∥∥
Lp

t Ḣ
s2
x

≤C

(∫ T

0

∥∥∥F−1
x

(
e−t|ξ|21|ξ|≥κ(ξ) f̂

)∥∥∥σp
Ḣs1

∥∥∥F−1
x

(
e−t|ξ|21|ξ|≥κ(ξ) f̂

)∥∥∥(1−σ)p

Ḣs1+2
dt

)1/p

≤C
∥∥∥F−1

x

(
e−t|ξ|21|ξ|≥κ(ξ) f̂

)∥∥∥σ
L∞

t Ḣ
s1
x

∥∥∥F−1
x

(
e−t|ξ|21|ξ|≥κ(ξ) f̂

)∥∥∥1−σ

L2
t Ḣ

s1+1
x

≤C
∥∥∥F−1

x

(
e−t|ξ|21|ξ|≥κ(ξ) f̂

)∥∥∥
L∞

t Ḣ
s1
x

+ C
∥∥∥F−1

x

(
e−t|ξ|21|ξ|≥κ(ξ) f̂

)∥∥∥
L2

t Ḣ
s1+1
x

.

By well-known properties of the heat kernel, each term above is controlled by

the quantity
∥∥∥F−1

x

(
1|ξ|≥κ(ξ) f̂

)∥∥∥
Ḣs1

, and we get∥∥∥F−1
x

(
e−t|ξ|21|ξ|≥κ(ξ) f̂

)∥∥∥
Lp

t Ḣ
s2
x

≤ C
∥∥∥F−1

x

(
1|ξ|≥κ(ξ) f̂

)∥∥∥
Ḣs1

.

Thereafter, since f ∈ Ḣs1(R3), for ε > 0 we can set κ = Rε > 0 big enough
such that

C
∥∥∥F−1

x

(
1|ξ|≥Rε

(ξ) f̂
)∥∥∥

Ḣs1
≤ ε

2
.

For the second term, using again the identity p = 2
s2−s1

we write∥∥∥F−1
x

(
e−t|ξ|21|ξ|<Rε

(ξ) f̂
)∥∥∥

Lp
t Ḣ

s2
x

=

(∫ T

0

∥ |ξ|s2 e−t|ξ|21|ξ|<Rε
(ξ) f̂∥pL2dt

)1/p

=

(∫ T

0

∥ |ξ|s2−s1 e−t|ξ|21|ξ|<Rε
(ξ) |ξ|s1 f̂∥pL2dt

)1/p

≤ (Rp(s2−s1)
ε T )1/p∥f∥Ḣs1 = (R2

εT )
1/p∥f∥Ḣs1 . ■
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3 Proof of Theorem 1

In equations (3) and (4), we have a bilinear term

B
(
(u, θ) , (ũ, θ̃)

)
=
(
B1( (u, θ) , (ũ, θ̃) ), B2( (u, θ) , (ũ, θ̃) )

)
,

where B1 involves only u and ũ, while B2 involves u and θ̃, as follows:

B1( (u, θ) , (ũ, θ̃) ) = −
∫ t

0

e(t−τ)∆P ((u · ∇)ũ) (τ, ·)dτ,

B2( (u, θ) , (ũ, θ̃) ) = −
∫ t

0

e(t−τ)∆u · ∇θ̃(τ, ·)dτ.

Moreover, we have a liner term involving θ,

L( (u, θ) ) = ( L1( (u, θ) ), L2( (u, θ) ) ),

with

L1( (u, θ) ) =

∫ t

0

e(t−τ)∆P (θe3) (τ, ·)dτ and L2 ≡ 0.

Thus, letting e = (u, θ) and e0 = ( et∆u0, e
t∆θ0 ), the whole system (3)-(4) is

written of the form
e = e0 +B(e, e) + L(e), (7)

and to construct a solution we use the following version of the Picard’s iteration
scheme:

Lemma 3.1 Let (E, ∥ · ∥E) be a Banach space and let e0 ∈ E be an initial
datum. We set ∥e0∥E ≤ δ. Moreover, let B : E×E → E be a bilinear form and
let L : E → E be a linear form, which, for all e, f ∈ E verify

∥B(e, f)∥E ≤ CB∥e∥E ∥f∥E and ∥L(e)∥E ≤ CL∥e∥E .

If the constants CB > 0 and CL > 0 satisfy the relationships:

0 < CL <
1

3
, 0 < 9CB δ < 1 and CL + 6CB δ < 1, (8)

then equation 7 has a solution e, which is uniquely defined by ∥e∥E ≤ 3δ.

For a proof, we refer to [4] (proof oh Theorem 3.2 in Appendix). Observe that
the last inequality in (8) is consequence of the two first inequalities.

Now, to prove Theorem 1 we shall consider the cases s < 1/2 < r and s =
1/2, 1/2 ≤ r ≤ 1 separately.

3.1 The case 0 ≤ s < 1/2 < r < 2.

Let T > 0 a time. For the sake of simplicity we shall denote the Banach spaces

E1 = L∞([0, T ], Hr(R3)) ∩ L2([0, T ], Ḣr+1(R3)),
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and
E2 = L∞([0, T ], Ḣ−s(R3)) ∩ L2([0, T ], Ḣ−s+1(R3)),

with the usual norms

∥f∥E1
= sup

0≤t≤T
∥f(t, ·)∥Hr +

(∫ T

0

∥f(t, ·)∥2
Ḣr+1dt

) 1
2

,

and

∥f∥E2
= sup

0≤t≤T
∥f(t, ·)∥Ḣ−s +

(∫ T

0

∥f(t, ·)∥2
Ḣ−s+1dt

) 1
2

,

respectively. Here the homogeneous Sobolev spaces are defined as the closure of
the test functions with respect to the homogeneous Sobolev seminorm. We will
use the Picard’s iteration scheme (given in Lemma 3.1) to construct a local in
time solution (u, θ) ∈ E1 × E2 of the coupled system (3)-(4).

In these equations, terms involving initial data are simple to estimate and we
have

∥et∆u0∥E1
≤ C∥u0∥Hr , ∥et∆θ0∥E2

≤ C∥θ0∥Ḣ−s . (9)

Moreover, for the bilinear term in equation (3) we have the well-known estimate∥∥∥∥∫ t

0

e(t−τ)∆P ((u · ∇)v) (τ, ·)dτ
∥∥∥∥
E1

≤ CT
1
4 min(1,2r−1) ∥u∥E1

∥v∥E1
, (10)

see for instance [12, Theorem 7.3].

Thus, the novelty in this proof is to use the information u ∈ E1 and θ ∈ E2 to

perform sharp estimates on the term

∫ t

0

e(t−τ)∆P (θe3) (τ, ·)dτ in equation (3),

and the term

∫ t

0

e(t−τ)∆u · ∇θ(τ, ·)dτ in equation (4). For the sake of clearness,

we state these estimates in the following set of technical lemmas.

Lemma 3.2 We have∥∥∥∥∫ t

0

e(t−τ)∆P (θe3) (τ, ·)dτ
∥∥∥∥
E1

≤ C
(
T + T

2−(r+s)
2

)
∥θ∥E2

, (11)

where the upper bound in (5) yields that 2− (r + s) > 0.

Proof. To control the first term in the norm ∥ · ∥E1 , for 0 < t ≤ T fixed we
write ∥∥∥∥∫ t

0

e(t−τ)∆P (θe3) (τ, ·)dτ
∥∥∥∥
Hr

≤
∫ t

0

∥∥∥e(t−τ)∆(θe3)(τ, ·)
∥∥∥
Hr

dτ.

Then, we apply Lemma 2.1 (with s1 = −s and s2 = r + s) to write∫ t

0

∥∥∥e(t−τ)∆(θe3)(τ, ·)
∥∥∥
Hr

dτ ≤C

∫ t

0

(1 + (t− τ)−
r+s
2 )∥θ(τ, ·)∥H−sdτ

≤C

∫ t

0

(1 + (t− τ)−
r+s
2 )∥θ(τ, ·)∥Ḣ−sdτ

≤C(t+ t1−
r+s
2 )∥θ∥L∞

t Ḣ−s
x

,

9



where we have used the fact that s > 0. We then obtain

sup
0≤t≤T

∥∥∥∥∫ t

0

e(t−τ)∆P (θe3) (τ, ·)dτ
∥∥∥∥
Hr

≤ C(T + T
2−(r+s)

2 )∥θ∥E2 . (12)

To control the second term in the norm ∥ · ∥E1
, we write∥∥∥∥∫ t

0

e(t−τ)∆P(θe3)(τ, ·)dτ
∥∥∥∥
L2

t Ḣ
r+1
x

=

∥∥∥∥(−∆)
r+1
2

(∫ t

0

e(t−τ)∆P(θe3)(τ, ·)dτ
)∥∥∥∥

L2
tL

2
x

=

∥∥∥∥∆(∫ t

0

e(t−τ)∆P(−∆)
r−1
2 (θe3)(τ, ·)dτ

)∥∥∥∥
L2

tL
2
x

,

and by the second point of Lemma 2.2 we have∥∥∥∥∆(∫ t

0

e(t−τ)∆P(−∆)
r−1
2 (θe3)(τ, ·)dτ

)∥∥∥∥
L2

tL
2
x

≤ C∥θ∥L2
t Ḣ

r−1
x

.

Then, we use interpolation inequalities in homogeneous Sobolev spaces by writ-
ing r − 1 = σ(−s) + (1− σ)(−s+ 1), hence σ = 2− (r + s).

Remark 3.1 Note that 0 < σ ≤ 1 as long as (5) holds.

We thus obtain

C

(∫ T

0

∥θ(τ, ·)∥2
Ḣr−1dτ

) 1
2

≤C

(∫ T

0

∥θ(τ, ·)∥2σ
Ḣ−s∥θ(τ, ·)∥

2(1−σ)

Ḣ1−s
dτ

) 1
2

≤C∥θ∥σ
L∞

t Ḣ−s
x

(∫ T

0

∥θ(τ, ·)∥2(1−σ)

Ḣ1−s
dτ

) 1
2

.

(13)

In order to control the last integral, we apply Hölder inequalities with p = 1
1−σ

and q = 1
σ (hence we have 1 = 1/p+ 1/q) to obtain(∫ T

0

∥θ(τ, ·)∥2(1−σ)

Ḣ1−s
dτ

) 1
2

≤

(∫ T

0

∥θ(τ, ·)∥2
Ḣ1−sdτ

) 1−σ
2

T
σ
2

= ∥θ∥1−σ

L2
t Ḣ

1−s
x

T
σ
2 .

(14)

Gathering (13) and (14), and applying the discrete Young inequalities with p
and q given above, we have∥∥∥∥∫ t

0

e(t−τ)∆P(θe3)(τ, ·)dτ
∥∥∥∥
L2

t Ḣ
r+1
x

≤ CT
σ
2 ∥θ∥E2 . (15)

Inequality (11) directly follows from (12) and (15), and the identity σ = 2 −
(r + s) > 0. ■
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Lemma 3.3 We have∥∥∥∥∫ t

0

e(t−τ)∆u · ∇θ(τ, ·)dτ
∥∥∥∥
E2

≤ CT− s
4+

1
8 ∥u∥E1

∥θ∥E2
, 0 < −s

4
+

1

8
. (16)

Observe that 0 < − s
4 + 1

8 as long as s < 1
2 .

Proof. For the first term in ∥ · ∥E2
, we have the estimate∥∥∥∥∫ t

0

e(t−τ)∆u · ∇θ(τ, ·)dτ
∥∥∥∥
L∞

t Ḣ−s
x

≤ CT− s
4+

1
8 ∥u∥E1

∥θ∥E2
. (17)

Indeed, using the first point in Lemma 2.2 we write∥∥∥∥∫ t

0

e(t−τ)∆u · ∇θ(τ, ·)dτ
∥∥∥∥
Ḣ−s

=

∥∥∥∥(−∆)−
s
2

(∫ t

0

e(t−τ)∆u · ∇θ(τ, ·)dτ
)∥∥∥∥

L2

≤C

∥∥∥∥∇⊗
(∫ t

0

e(t−τ)∆(−∆)−
s
2 (θu)(τ, ·)dτ

)∥∥∥∥
L2

≤C∥(−∆)−
s
2 (θu)∥L2

tL
2
x
= C∥θu∥L2

t Ḣ
−s
x

.

To control the last term, by the Product laws in homogeneous Sobolev spaces
we have

C∥θu∥L2
t Ḣ

−s
x

≤ C

(∫ T

0

∥θ(τ, ·)∥2
Ḣ− s

2
+ 3

4
∥u(τ, ·)∥2

Ḣ− s
2
+ 3

4
dτ

) 1
2

. (18)

Remark that 0 < − s
2 + 3

4 < 3
2 as long as − 3

2 < s < 3
2 , which is verified for

0 ≤ s < 1
2 .

In the first term on the right of (18), we apply interpolation estimates with the
relationships − s

2 + 3
4 = −sσ1 + (1 − s)(1 − σ1) with σ1 = − s

2 + 1
4 . Remark

that the required control 0 < σ1 < 1 is ensured by our assumption 0 ≤ s < 1
2 .

Therefore we can write

∥θ(τ, ·)∥2
Ḣ− s

2
+ 3

4
≤ C ∥θ(τ, ·)∥2σ1

Ḣ−s
∥θ(τ, ·)∥2(1−σ1)

Ḣ−s+1
.

Similarly, in the second on the right of (18), we use − s
2 + 3

4 = σ20 + (1− σ2)r
with σ2 = s

2r − 3
4r + 1, where we also have 0 < σ2 < 1. Indeed, on the one

hand, observe that 0 < σ2 as long as 3
4 < s

2 + r. However, this last inequality
is verified thanks to (5) and the fact that s < 1

2 < r: by the lower bound in
(5) we write 3

4 ≤ 3
4s+

3
4r. The inequality 3

4s+
3
4r < s

2 + r is equivalent to the
inequality s < r, which is ensured by s < 1

2 < r. On the other hand, observe
that σ2 < 1 as long as s < 3

2 , which is ultimately verified by the assumption
s < 1

2 . Therefore, we write

∥u(τ, ·)∥2
Ḣ− s

2
+ 3

4
≤ C ∥u(τ, ·)∥2σ2

L2 ∥u(τ, ·)∥2(1−σ2)

Ḣr
.

11



We thus obtain

C

(∫ T

0

∥θ(τ, ·)∥2
Ḣ− s

2
+ 3

4
∥u(τ, ·)∥2

Ḣ− s
2
+ 3

4
dτ

) 1
2

≤C

(∫ T

0

∥θ(τ, ·)∥2σ1

Ḣ−s
∥θ(τ, ·)∥2(1−σ1)

Ḣ−s+1
∥u(τ, ·)∥2σ2

L2 ∥u(τ, ·)∥2(1−σ2)

Ḣr
dτ

) 1
2

≤C∥θ∥σ1

L∞
t Ḣ−s

x
∥u∥σ2

L∞
t L2

x
∥u∥1−σ2

L∞
t Ḣr

x

(∫ T

0

∥θ(τ, ·)∥2(1−σ1)

Ḣ−s+1
dτ

) 1
2

≤C∥u∥L∞
t Hr

x
∥θ∥σ1

L∞
t Ḣ−s

x

(∫ T

0

∥θ(τ, ·)∥2(1−σ1)

Ḣ−s+1
dτ

) 1
2

.

We still need to estimate the last integral. For this we use Hölder estimates (in
the variable of time) with 1

p = 1 − σ1 and 1
q = σ1. Moreover, recalling that

0 < σ1 = − s
2 + 1

4 we obtain

C∥u∥L∞
t Hr

x
∥θ∥σ1

L∞
t Ḣ−s

x

(∫ T

0

∥θ(τ, ·)∥2(1−σ1)

Ḣ−s+1
dτ

) 1
2

≤C∥u∥L∞
t Hr

x
∥θ∥σ1

L∞
t Ḣ−s

x

(∫ T

0

∥θ(τ, ·)∥2
Ḣ−s+1dτ

) 1−σ1
2

T
σ1
2

≤CT− s
4+

1
8 ∥u∥E1

∥θ∥E2
,

which yields (17).

For the second term in ∥ · ∥E2
we have the estimate∥∥∥∥∫ t

0

e(t−τ)∆u · ∇θ(τ, ·)dτ
∥∥∥∥
L2

t Ḣ
−s+1
x

≤ CT− s
4+

1
8 ∥u∥E1∥θ∥E2 . (19)

Indeed, we write ∥∥∥∥∫ t

0

e(t−τ)∆u · ∇θ(τ, ·)dτ
∥∥∥∥
L2

t Ḣ
−s+1
x

=

∥∥∥∥∫ t

0

e(t−τ)∆div(θu)(τ, ·)dτ
∥∥∥∥
L2

t Ḣ
−s+1
x

≤C

∥∥∥∥∫ t

0

e(t−τ)∆(θu)(τ, ·)dτ
∥∥∥∥
L2

t Ḣ
−s+2
x

.

We use here the second point in Lemma 2.2 to write

C

∥∥∥∥∫ t

0

e(t−τ)∆(θu)(τ, ·)dτ
∥∥∥∥
L2

t Ḣ
−s+2
x

≤C

∥∥∥∥∆(∫ t

0

e(t−τ)∆(−∆)−
s
2 (θu)(τ, ·)dτ

)∥∥∥∥
L2

tL
2
x

≤C∥(−∆)−
s
2 (θu)∥L2

tL
2
x
= C∥θu∥L2

tH
−s
x

,

12



where the last term was already estimated above. Estimate (16) now directly
follows from estimates (17) and (19). ■

With estimates (9), (10), (11) and (16) at our disposal, we set a time T0 small
enough in order to satisfy all the set of conditions (8) in Lemma 3.1, and we
obtain a solution (u, θ) ∈ E1 × E2 to the system (3)-(4).

In addition, this solution is the unique one in the space E1 × E2. The proof
of this fact is rather standard, so we shall only detail the main ideas. Let
(u1, θ1), (u2, θ2) be two solutions of (3)-(4) arising from the same initial data.
We define v = u1 −u2 and η = θ1 − θ2. Then, (v, η) solves the coupled system:

v(t, ·) = −
∫ t

0

e(t−τ)∆P
(
(u1 · ∇)v+ (v · ∇)u2

)
(τ, ·)dτ

+

∫ t

0

e(t−τ)∆P (ηe3) (τ, ·)dτ,

η(t, ·) = −
∫ t

0

e(t−τ)∆
(
v · ∇θ1 + u2 · ∇η

)
(τ, ·)dτ.

On the other hand, we denote by 0 ≤ T∗ ≤ T0 the maximal time such that
(v, η) = (0, 0) on [0, T∗] × R3. We shall prove that T∗ = T0. For this, we shall
assume that T∗ < T0 to obtain a contradiction. Indeed, if T∗ < T0 let a time
T∗ < T1 < T0. Then, we consider the spaces E1 and E2 on the interval of time
[T∗, T1]. By performing again the estimates (10), (11 and (16), we obtain

∥v∥E1
≤C(T1 − T∗)

1
4 min(1,2r−1) (∥u1∥E1

+ ∥u2∥E1
) ∥v∥E1

+ C
(
(T1 − T∗) + (T1 − T∗)

2−(r+s)
2

)
∥η∥E2

,

and
∥η∥E2

≤ C(T1 − T∗)
− s

4+
1
8 (∥v∥E1

∥θ1∥E2
+ ∥u2∥E1

∥η∥E2
) .

Here, we can set the time T1 close enough to the time T∗ such that ∥v∥E1 +
∥η∥E2 = 0. We obtain that (v, η) = (0, 0) on [0, T1)×R3, which is a contradiction
with the definition of the time T∗. We thus have T∗ = T0.

3.2 The case s = 1/2 and 1/2 ≤ r ≤ 1.

Due to technical difficulties, and for the sake of clearness, we will divide this
case in the following subcases.

3.2.1 When s = 1/2 and r = 1/2.

We set
E1 = L∞([0, T ], H

1
2 (R3)) ∩ L2([0, T ], Ḣ

3
2 (R3)),

and
E2 = L∞([0, T ], Ḣ− 1

2 (R3)) ∩ L2([0, T ], Ḣ
1
2 (R3)),

considering the norms

∥f∥E1
= sup

0≤t≤T
∥f(t, ·)∥

H
1
2
+

(∫ T

0

∥f(t, ·)∥2
Ḣ

3
2
dt

) 1
2

,
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and

∥f∥E2 = sup
0≤t≤T

∥f(t, ·)∥
Ḣ− 1

2
+

(∫ T

0

∥f(t, ·)∥2
Ḣ

1
2
dt

) 1
2

.

For the initial data part we have

∥et∆u0∥E1
≤ C∥u0∥

H
1
2
, ∥et∆θ0∥E2

≤ C∥θ0∥Ḣ−1/2 . (20)

However, in contrast to the previous case s < 1
2 < r, estimates on the bilinear

terms in equations (3) and (4) are not longer dependent on the time T , and this
fact constraints to consider small initial data (u0, θ0) ∈ Ḣ1/2(R3)× Ḣ−1/2(R3)
in order to construct a local in time solution (u, θ) ∈ E1 × E2 to the system
(3)-(4).

To overcome this problem (in order to work with large data) we shall consider
different functional spaces to apply the point-fixed argument. Remark that by
interpolation inequalities we have the continuous embeddings

E1 ⊂ L4([0, T ], Ḣ1(R3)), and E2 ⊂ L4([0, T ], L2(R3)). (21)

By (20) and (21) we obtain that et∆u0 ∈ L4([0, T ], Ḣ1(R3)) and et∆θ0 ∈
L4([0, T ], L2(R3), and we thus have the following bound, uniformly in T ,

∥et∆u0∥L4([0,T ],Ḣ1(R3)) ≤ C∥u0∥
H

1
2
,

∥et∆θ0∥L4([0,T ],L2(R3)) ≤ C∥θ0∥Ḣ−1/2 .

Moreover, in Lemma 2.3 we set the parameters (s1, s2) = (1/2, 1) and (s1, s2) =
(−1/2, 0), hence in both case we get p = 4. Then, one have the controls:∥∥et∆u0

∥∥
L4

t Ḣ
1
x
≤ ε

2
+ C (R2

ε T )
1
4 ∥u0∥Ḣ1/2 , (22)

and ∥∥et∆θ0∥∥L4
tL

2
x
≤ ε

2
+ C (R2

ε T )
1
4 ∥θ0∥Ḣ−1/2 . (23)

Consequently, estimates (22) and (23) allow us to consider any initial data

(u0, θ0) ∈ Ḣ1/2(R3)× Ḣ−1/2(R3),

and to still use the Picard’s iteration scheme to construct a (local in time)
solution (u, θ) ∈ L4([0, T ], Ḣ1(R3)) × L4([0, T ], L2(R3)) to the coupled system
(3)-(4).

As before, we shall estimate all the terms in (3)-(4). For the bilinear term in
equation (3), by [1, Corollary 5.11] we have the well-known estimate∥∥∥∥∫ t

0

e(t−τ)∆P ((u · ∇)v) (τ, ·)dτ
∥∥∥∥
L4

t Ḣ
1
x

≤ C∥u∥L4
t Ḣ

1
x
∥v∥L4

t Ḣ
1
x
, (24)

where the constant C > 0 does not depend on the time T . So, we must focus
on the rest of the terms in equations (3)-(4).
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Lemma 3.4 We have∥∥∥∥∫ t

0

e(t−τ)∆P (θe3) (τ, ·)dτ
∥∥∥∥
L4

t Ḣ
1
x

≤ CT
1
2 ∥θ∥L4

tL
2
x
. (25)

Proof. By the first point in Lemma 2.2 we write(∫ T

0

∥∥∥∥∫ t

0

e(t−τ)∆P (θe3) (τ, ·)dτ
∥∥∥∥4
Ḣ1

dt

) 1
4

≤

(∫ T

0

∥θ∥4L2
tL

2
x
dt

) 1
4

≤C T
1
4 ∥θ∥L2

tL
2
x
≤ C T

1
4 × T

1
2−

1
4 ∥θ∥L4

tL
2
x
.

■

Lemma 3.5 We have∥∥∥∥∫ t

0

e(t−τ)∆u · ∇θ(τ, ·)dτ
∥∥∥∥
L4

tL
2
x

≤ C ∥u∥L4
t Ḣ

1
x
∥θ∥L4

tL
2
x
, (26)

with a constant C > 0 independent of T .

Proof. We write∥∥∥∥∫ t

0

e(t−τ)∆u · ∇θ(τ, ·)dτ
∥∥∥∥
L4

tL
2
x

=

∥∥∥∥∫ t

0

e(t−τ)∆div(θu)(τ, ·)dτ
∥∥∥∥
L4

tL
2
x

≤C

∥∥∥∥∫ t

0

e(t−τ)∆(θu)(τ, ·)dτ
∥∥∥∥
L4

t Ḣ
1
x

.

Using the third point in Lemma 2.2 with s1 = −1/2, s2 = 3/2 and p = 4, we
get

C

∥∥∥∥∫ t

0

e(t−τ)∆(θu)(τ, ·)dτ
∥∥∥∥
L4

t Ḣ
1
x

≤ C

(∫ T

0

∥θu∥2
Ḣ−1/2dt

)1/2

.

Applying the Hardy-Littlewood-Sobolev inequalities and Hölder inequalities, we
write

C

(∫ T

0

∥θu∥2
Ḣ−1/2dt

)1/2

≤C

(∫ T

0

∥θu(t, ·)∥2L3/2 dt

)1/2

≤C

(∫ T

0

∥θ(t, ·)∥2L2 ∥u(t, ·)∥2L6 dt

)1/2

≤C

(∫ T

0

∥θ(t, ·)∥2L2 ∥u(t, ·)∥2Ḣ1 dt

)1/2

≤C ∥u∥L4
t Ḣ

1
x
∥θ∥L4

tL
2
x
.

■

Now, we are able to set a time T0 small and to apply Lemma 3.1 as follows:
first, by estimate (25) we set T0 small enough to satisfy the first condition in
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(8). On the other hand, recall that by estimates (24) and (26) the constant CB

does not depend on T0. Thus, we define δ =
∥∥et∆u0

∥∥
L4

t
+
∥∥et∆θ0∥∥L4

tL
2
x
, and in

estimates (22)-(23) we impose an additional smallness condition on T0 to get
δ < ε, with ε small. We thus satisfy the second and the third condition in (8).
This way, we obtain a solution (u, θ) ∈ L4([0, T0], Ḣ

1(R3))×L4([0, T0], L
2(R3))

to (3)-(4).

This solution also belongs to the space E1 × E2. To verify this fact, we shall
use the following result.

Lemma 3.6 (Lemma 5.10 of [1]) Let v ∈ C([0, T ],S ′(R3)) be a solution of
the heat equation

∂tv −∆v = g, u(0, ·) = u0.

Let σ ∈ R. If v0 ∈ Ḣσ(R3) and g ∈ L2([0, T ], Ḣσ−1(R3)) then we have

v ∈ L∞([0, T ], Ḣσ(R3)) ∩ L2([0, T ], Ḣσ+1(R3)).

We start by proving that θ ∈ E2. In this lemma we set σ = − 1
2 , v0 = θ0 ∈

Ḣ−1/2(R3) and g = u · ∇θ = div(θu), where we must verify that

g ∈ L2([0, T0], Ḣ
−3/2(R3)).

Indeed, since u ∈ L4
t Ḣ

1
x ⊂ L4

tL
6
x and θ ∈ L4

tL
2
x by Hölder inequalities and

Hardy-Littlewood-Sobolev inequalities we have θu ∈ L2
tL

3/2
x ⊂ L2

t Ḣ
−1/2
x , hence

we get g = div(θu) ∈ L2
t Ḣ

−3/2
x . We thus have θ ∈ E2.

Now we prove that u ∈ E1. Note that this lemma also holds for vector fields,
and by a slight abuse of notation we set σ = 1

2 , v0 = u0 and g = −P((u ·∇)u)+
P(θe3), where we will verify that

g ∈ L2([0, T0], Ḣ
−1/2(R3)).

It is well-known that u ∈ L4
t Ḣ

1
x yields P((u · ∇)u) ∈ L2

t Ḣ
−1/2
x (see [1, Theorem

5.6]). Moreover, since θ ∈ E2 we have P(θe2) ∈ L∞
t Ḣ

−1/2
x ⊂ L2

t Ḣ
−1/2
x . We

thus get u ∈ L∞
t Ḣ

1/2
x ∩ L2

t Ḣ
3/2
x by Lemma 3.6, and it remains to prove that

u ∈ L∞
t L2

x. Since (u ·∇)u = div(u⊗u) ∈ L2
t Ḣ

−1/2
x we can perform the classical

energy estimate in the first equation in the system (1) to get u ∈ L∞
t L2

x. This
way, we have u ∈ E1.

3.2.2 When s = 1/2 and 1/2 < r ≤ 1.

Here, we consider the spaces

E1 = L∞([0, T ], Hr(R3)) ∩ L2([0, T ], Ḣr+1(R3))

and
E2 = L∞([0, T ], Ḣ− 1

2 (R3)) ∩ L2([0, T ], Ḣ
1
2 (R3)),

with their usual norms. In order to construct a solution (u, θ) ∈ E1 × E2 of
the system (3)-(4), we shall follow some of the ideas of the previous case when
s = r = 1/2. First, remark that we have the following embeddings:

E1 ⊂ L4([0, T ], Ḣr+1/2(R3)) ∩ L4([0, T ], Ḣ1(R3)) = F1,
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and
E2 ⊂ L4([0, T ], L2(R3)) ∩ L4/(2r−1)([0, T ], Ḣr−1(R3)) = F2.

Indeed, by interpolation inequalities we have E1 ⊂ L4
t Ḣ

r+1/2
x . Moreover, we

have E1 ⊂ L∞
t H

1/2
x ∩ L2

t Ḣ
3/2
x ⊂ L4

t Ḣ
1
x, which yields the first embedding E1 ⊂

F1. The second embedding E2 ⊂ F2 also follows from interpolation inequalities:
on the one hand, we have E2 ⊂ L4

tL
2
x, and on the other hand, since 1/2 < r ≤ 1

then −1/2 < r − 1 ≤ 0 and we have E2 ⊂ L
4/(2r−1)
t Ḣr−1

x .

Spaces F1 and F2 are equipped with their standard norms

∥ · ∥F1
= ∥ · ∥L4

t Ḣ
1
x
+ ∥ · ∥

L4
t Ḣ

r+1/2
x

,

∥ · ∥F2
= ∥ · ∥L4

tL
2
x
+ ∥ · ∥

L
4/(2r+1)
t Ḣr−1

x
,

respectively. Firstly, these norms will allow us to control all the terms in equa-
tions (3)-(4) and to construct a solution (u, θ) ∈ F1 × F2. Then, we will verify
that this solution belongs to the space E1 ×E2, and we shall finish this part of
the proof with the uniqueness of this solution.

For the data term in equation (3), in Lemma 2.3 we set the parameters (s1, s2) =
(r, r + 1/2) and (s1, s2) = (1/2, 1), hence in both cases we get p = 4, and we
have the control: ∥∥et∆u0

∥∥
F1

≤ ε

2
+ (R2

εT )
1/4∥u0∥Hr . (27)

Similarly, for the data term in equation (4), in Lemma 2.3 we set now the
parameters (s1, s2 = −1/2, 0), hence we get p = 4, and (s1, s2) = (−1/2, r − 1),
hence we obtain p = 4

2r−1 . We thus have the control:∥∥et∆θ0∥∥F2
≤ ε

2
+
(
(R2

εT )
1/4 + (R2

εT )
(2r−1)/4

)
∥θ0∥Ḣ−1/2 . (28)

Then, the rest of the terms in equations (3)-(4) can be estimated as follows.

Lemma 3.7 We have∥∥∥∥∫ t

0

e(t−τ)∆P ((u · ∇)v) (τ, ·)dτ
∥∥∥∥
F1

≤ C∥u∥F1
∥v∥F1

, (29)

with a constant C > 0 independent of T .

Proof. The term involving the norm ∥ · ∥L4
t Ḣ

1
x
was estimated in (24). Then, for

the norm ∥ · ∥L4
t Ḣ

r+1/2 , by the third point of Lemma 2.2 we get∥∥∥∥∫ t

0

e(t−τ)∆P ((u · ∇)v) (τ, ·)dτ
∥∥∥∥
L4

t Ḣ
r+1/2

≤ C ∥(u · ∇)v∥L2
t Ḣ

r−1
x

,

and we write

C ∥(u · ∇)v∥L2
t Ḣ

r−1
x

≤ C ∥div(v⊗ u)∥L2
t Ḣ

r−1
x

≤C ∥v⊗ u∥L2
t Ḣ

r
x
.

(30)
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By product laws in homogeneous Sobolev spaces (with the relationship r =
(r + 1/2) + 1 − 3/2), and by Hölder inequalities in the time variable (with
1/2 = 1/4 + 1/4) we obtain

C ∥v⊗ u∥L2
t Ḣ

r
x
≤C∥v∥

L4
t

˙
H

r+1/2
x

∥u∥L4
t Ḣ

1
x
+ C∥u∥

L4
t

˙
H

r+1/2
x

∥v∥L4
t Ḣ

1
x

≤C ∥u∥F1
∥v∥F1

,
(31)

hence estimate (29) follows. ■

Lemma 3.8 It holds∥∥∥∥∫ t

0

e(t−τ)∆P
(
θe3

)
(τ, ·)

∥∥∥∥
F1

≤ Cmax
(
T 1/2, T (3−2r)/4

)
∥θ∥F2 , (32)

where, since 1/2 < r ≤ 1 we have (3− 2r)/4 > 0.

Proof. The term concerning the norm ∥ · ∥L4
t Ḣ

1
x
was estimated in (25), so it

remains to study the term concerning the norm ∥·∥
L4

t Ḣ
r+1/2
x

. By the third point

of Lemma 2.2, and by the fact that 4/(2r− 1) > 2 (recall that 1/2 < r ≤ 1), we
write∥∥∥∥∫ t

0

e(t−τ)∆P
(
θe3

)
(τ, ·)

∥∥∥∥
L4

t Ḣ
r+1/2
x

≤C ∥θ∥L2
t Ḣ

r−1
x

≤C T 1/2−(2r−1)/4∥θ∥
L

4/(2r−1)
t Ḣr−1

x
,

where the expression 1/2 − (2r − 1)/4 computes down as (3 − 2r)/4. We thus
obtain the wished estimate (32). ■

Lemma 3.9 We have∥∥∥∥∫ t

0

e(t−τ)∆u · ∇θ(τ, ·)dτ
∥∥∥∥
F2

≤ C(1 + T (2r−1)/4) ∥u∥F1
∥θ∥F2

. (33)

Proof. The term involving the norm ∥ · ∥L4
tL

2
x
was already treated in estimate

(26), and must study the term involving the norm ∥ · ∥
L

4/(2r−1)
t Ḣr−1

x
. For this,

remark first that in the case r = 1 we have L
4/(2r−1)
t Ḣr−1

x = L4
tL

2
x, so this case

is done. We thus focus on the case 1/2 < r < 1. We start by writing∥∥∥∥∫ t

0

e(t−τ)∆u · ∇θ(τ, ·)dτ
∥∥∥∥
L

4/(2r−1)
t Ḣr−1

x

≤C T (2r−1)/4

∥∥∥∥∫ t

0

e(t−τ)∆u · ∇θ(τ, ·)dτ
∥∥∥∥
L∞

t Ḣr−1
x

≤C T (2r−1)/4

∥∥∥∥∫ t

0

e(t−τ)∆div
(
(−∆)(r−1)/2(θu)

)
(τ, ·)dτ

∥∥∥∥
L∞

t L2
x

.
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We apply the first point of Lemma 2.2 to obtain

C T (2r−1)/4

∥∥∥∥∫ t

0

e(t−τ)∆div
(
(−∆)(r−1)/2(θu)

)
(τ, ·)dτ

∥∥∥∥
L∞

t L2
x

≤C T (2r−1)/4∥(−∆)(r−1)/2(θu)∥L2
tL

2
x
= C T (2r−1)/4∥θu∥L2

t Ḣ
r−1
x

.

Observe that we −1/2 < r − 1 < 0 (since 1/2 < r < 1). We thus apply
Hardy-Littlewood-Sobolev inequalities and for p = 6/(5 − 2r) (which verifies
3/2 < p < 2) we write

C T (2r−1)/4∥θu∥L2
tH

r−1
x

≤ C T (2r−1)/4∥θu∥L2
tL

p
x
.

Then, we use Hölder inequalities (with 1/p = 1/2 + 1/q and q = 3/(1 − r)) to
obtain

C T (2r−1)/4∥θu∥L2
tL

p
x
≤ C T (2r−1)/4

(∫ T

0

∥θ(τ, ·)∥2L2∥u(τ, ·)∥2Lqdτ

)1/2

.

In the last term, remark that by Hardy-Littlewood-Sobolev inequalities we have
the continuous embedding Ḣr+1/2(R3) ⊂ Lq(R3). Moreover, by Hölder inequal-
ities in the time variable (with 1/2 = 1/4 + 1/4), we have

C T (2r−1)/4

(∫ T

0

∥θ(τ, ·)∥2L2∥u(τ, ·)∥2Lqdτ

)1/2

≤C T (2r−1)/4

(∫ T

0

∥θ(τ, ·)∥2L2∥u(τ, ·)∥2Ḣr+1/2dτ

)1/2

≤C T (2r−1)/4 ∥θ∥L4
tL

2
x
∥∥u∥

L4
t Ḣ

r+1/2
x

≤C T (2r−1)/4 ∥θ∥F2∥∥u∥F1 .

We thus obtain the desired estimate (33). ■

With estimates (27), (28), (29), (32) and (33) at hand, we proceed as in the
previous case (when r = s = 1/2) to obtain a solution (u, θ) ∈ F1 × F2 of the
system (3)-(4) for a time T0 > 0 small.

Now, by Lemma 3.6 and the information (u, θ) ∈ F1 × F2 we have (u, θ) ∈
E1 × E2. Indeed, the fact that θ ∈ E2 was already proven in Section 3.2.1
(below Lemma 3.6), so it remains to prove that u ∈ E1. For this, we must prove
that (u · ∇)u + θe3 ∈ L2

t Ḣ
r−1
x . For the first term, by estimates (30) and (31)

we directly obtain (u · ∇)u ∈ L2
t Ḣ

r−1
x . For the second term, since θ ∈ F2 we

have θ ∈ L
4/(2r−1)
t Ḣr−1

x . Moreover, since r ≤ 1 in particular we have r < 3/2
hence 4/(2r − 1) > 2. We thus get θ ∈ L2

t Ḣ
r−1
x , and by Lemma 3.6 we have

u ∈ L∞
t Ḣr

x ∩L2
t Ḣ

r+1
x . Moreover, following the same ideas at the end of Section

3.2.1, we also have u ∈ L∞
t L2

x and we get u ∈ E1.

Theorem 1 is now proven. ■
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4 Proof of Proposition 1.1

As in Section 3.2.1, we denote

E1 = L∞([0, T ], H
1
2 (R3)) ∩ L2([0, T ], Ḣ

3
2 (R3)),

and
E2 = L∞([0, T ], Ḣ− 1

2 (R3)) ∩ L2([0, T ], Ḣ
1
2 ∩ Ẇ 1,3(R3)).

Moreover, we define v = u1−u2 and η = θ1−θ2. Then, the couple (v, η) solves
the following system:

∂tv−∆v+ P
(
(u1 · ∇)v+ (v · ∇)u2

)
− P(ηe3) = 0, div(v) = 0,

∂tη −∆η + u1 · ∇η + v · ∇θ2 = 0,

v(0, ·) = 0, η(0, ·) = 0.

Since v ∈ E1 and η ∈ E2, in the first equation above we can perform an energy
estimate in the Ḣ1/2−inner product ⟨f, g⟩Ḣ1/2 =

∫
R3 |ξ|f̂(ξ)¯̂g(ξ)dξ, while in

the second equation above we perform an energy estimate in the Ḣ−1/2−inner
product ⟨f, g⟩Ḣ−1/2 =

∫
R3 |ξ|−1f̂(ξ)¯̂g(ξ)dξ. Then, for 0 < t ≤ T0 we obtain

d

dt
∥v(t, ·)∥2

Ḣ1/2 + 2∥∇ ⊗ v(t, ·)∥2
Ḣ1/2

= − 2
〈
(u1 · ∇)v+ (v · ∇)u2,v

〉
Ḣ1/2

+ 2
〈
ηe3,v

〉
Ḣ1/2

,

d

dt
∥η(t, ·)∥2

Ḣ−1/2 + 2∥∇η(t, ·)∥2
Ḣ−1/2

= − 2
〈
u1 · ∇η + v · ∇θ2, η

〉
Ḣ−1/2

.

To simplify our writing, we shall denote

E1(t) = ∥v(t, ·)∥2
Ḣ1/2 + ∥η(t, ·)∥2

Ḣ−1/2 ,

and
E2(t) = ∥∇ ⊗ v(t, ·)∥2

Ḣ1/2 + ∥∇η(t, ·)∥2
Ḣ−1/2 .

We thus have

d

dt
E1(t) + 2E2(t)

= − 2
〈
(u1 · ∇)v+ (v · ∇)u2,v

〉
Ḣ1/2

+ 2
〈
ηe3,v

〉
Ḣ1/2

− 2
〈
u1 · ∇η + v · ∇θ2, η

〉
Ḣ−1/2

,

(34)

where we must estimate each term on the right-hand side.

Lemma 4.1 We have

2
∣∣∣〈(u1 · ∇)v+ (v · ∇)u2, v

〉
Ḣ1/2

∣∣∣
≤C E1(t)

(
∥u1(t, ·)∥4Ḣ1 + ∥u2(t, ·)∥4Ḣ1

)
+

1

3
E2(t).

(35)
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Proof. By [1, Lemma 5.12], the interpolation inequalities and the discrete
Young inequalities (with 1 = 1/4 + 3/4), we have

2
∣∣∣〈(u1 · ∇)v,v

〉
Ḣ1/2

∣∣∣
≤C ∥u1(t, ·)∥Ḣ1∥v(t, ·)∥Ḣ1∥∇ ⊗ v(t, ·)∥Ḣ1/2

≤C ∥u1(t, ·)∥Ḣ1∥v(t, ·)∥1/2
Ḣ1/2

∥v(t, ·)∥1/2
Ḣ3/2

∥∇ ⊗ v(t, ·)∥Ḣ1/2

≤C ∥u1(t, ·)∥Ḣ1∥v(t, ·)∥1/2
Ḣ1

∥∇ ⊗ v(t, ·)∥3/2
Ḣ1/2

≤C ∥u1(t, ·)∥4Ḣ1∥v(t, ·)∥2Ḣ1/2 +
1

6
∥∇ ⊗ v(t, ·)∥2

Ḣ1/2

≤CE1(t)∥u1(t, ·)∥4Ḣ1 +
1

6
E2(t).

By the same arguments, we can write

2
∣∣∣〈(v · ∇)u2,v

〉
Ḣ1/2

∣∣∣
≤C ∥v(t, ·)∥Ḣ1∥u2(t, ·)∥Ḣ1∥∇ ⊗ v(t, ·)∥Ḣ1/2

≤C ∥v(t, ·)∥1/2
Ḣ1/2

∥v(t, ·)∥1/2
Ḣ3/2

∥u2(t, ·)∥Ḣ1∥∇ ⊗ v(t, ·)∥Ḣ1/2

≤C ∥v(t, ·)∥1/2
Ḣ1/2

∥u2(t, ·)∥Ḣ1∥∇ ⊗ v(t, ·)∥3/2
Ḣ1/2

≤C ∥v(t, ·)∥2
Ḣ1/2∥u2(t, ·)∥4Ḣ1 +

1

6
∥∇ ⊗ v(t, ·)∥2

Ḣ1/2

≤CE1(t)∥u2(t, ·)∥4Ḣ1 +
1

6
E2(t).

Gathering these estimates, we obtain (35). ■

Lemma 4.2 It holds ∣∣∣〈ηe3, v〉
Ḣ1/2

∣∣∣ ≤ CE1(t) +
1

3
E2(t). (36)

Proof. We write

2
∣∣∣〈ηe3,v〉

Ḣ1/2

∣∣∣ ≤ 2

∫
R3

|η̂(t, ξ)| |ξ||v̂(t, ξ)|dξ

≤ 2∥η(t, ·)∥L2 ∥v(t, ·)∥Ḣ1

≤C∥η(t, ·)∥L2∥v(t, ·)∥1/2
Ḣ1/2

∥∇ ⊗ v(t, ·)∥1/2
Ḣ1/2

=C∥v(t, ·)∥1/2
Ḣ1/2

∥η(t, ·)∥L2∥∇ ⊗ v(t, ·)∥1/2
Ḣ1/2

.

Then, we apply the discrete Young inequalities (first with 1 = 1/4 + 3/4 and
thereafter with 1 = 1/3 + 2/3) to get

C∥v(t, ·)∥1/2
Ḣ1/2

∥η(t, ·)∥L2∥∇ ⊗ v(t, ·)∥1/2
Ḣ1/2

≤C ∥v(t, ·)∥2
Ḣ1/2 + ∥η(t, ·)∥4/3L2 ∥∇ ⊗ v(t, ·)∥2/3

Ḣ1/2

≤C ∥v(t, ·)∥2
Ḣ1/2 + C ∥η(t, ·)∥2L2 +

1

6
∥∇ ⊗ v(t, ·)∥2

Ḣ1/2

≤C E1(t) + C ∥η(t, ·)∥2L2 +
1

6
E2(t).
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Moreover, by interpolation inequalities and using again the discrete Young in-
equalities (with 1 = 1/2 + 1/2), the term ∥η(t, ·)∥2L2 is estimated as:

C ∥η(t, ·)∥2L2 ≤C ∥η(t, ·)∥Ḣ−1/2∥η(t, ·)∥Ḣ1/2

≤C ∥η(t, ·)∥Ḣ−1/2∥∇η(t, ·)∥Ḣ−1/2

≤C ∥η(t, ·)∥2
Ḣ−1/2 +

1

6
∥∇η(t, ·)∥2

Ḣ−1/2

≤C E1(t) +
1

6
E2(t).

Gathering these estimates, we obtain (36). ■

Lemma 4.3 We have

2
∣∣∣〈u1 · ∇η + v · ∇θ2, η

〉
Ḣ−1/2

∣∣∣
≤C E1(t)

(
∥u1(t, ·)∥4Ḣ1 + ∥θ2(t, ·)∥2Ẇ 1,3 + 1

)
+

1

3
E2(t).

(37)

Proof. To study the first term involving the expression u1 · ∇η, by the identity
u1 · ∇η = div(ηu1) we write

2
∣∣∣〈div(ηu1), η

〉
Ḣ−1/2

∣∣∣ ≤C

∫
R3

|ξ|−1|ξ||η̂u1| |η̂|dξ

≤C

∫
R3

|η̂u1| |η̂|dξ

≤C ∥ηu1(t, ·)∥L2 ∥η(t, ·)∥L2 .

Then, applying Hölder inequalities and Hardy-Littlewood-Sobolev inequalities,
we get

C ∥ηu1(t, ·)∥L2 ∥η(t, ·)∥L2 ≤C ∥η(t, ·)∥L3∥u1(t, ·)∥L6∥η(t, ·)∥L2

≤C ∥η(t, ·)∥Ḣ1/2∥u1(t, ·)∥Ḣ1∥η(t, ·)∥L2 .

Thereafter, in the last we apply interpolation inequalities to write

C ∥η(t, ·)∥Ḣ1/2∥u1(t, ·)∥Ḣ1∥η(t, ·)∥L2

≤C ∥η(t, ·)∥Ḣ1/2∥u1(t, ·)∥Ḣ1∥η(t, ·)∥1/2
Ḣ−1/2

∥η(t, ·)∥1/2
Ḣ1/2

≤C ∥η(t, ·)∥1/2
Ḣ−1/2

∥u1(t, ·)∥Ḣ1∥η(t, ·)∥3/2
Ḣ1/2

≤C ∥η(t, ·)∥1/2
Ḣ−1/2

∥u1(t, ·)∥Ḣ1∥∇η(t, ·)∥3/2
Ḣ−1/2

.

We use the discrete Young inequalities (with 1 = 1/4 + 3/4) to get

C ∥η(t, ·)∥1/2
Ḣ−1/2

∥u1(t, ·)∥Ḣ1∥∇η(t, ·)∥3/2
Ḣ−1/2

≤C ∥η(t, ·)∥2
Ḣ−1/2∥u1(t, ·)∥4Ḣ1 +

1

3
∥∇η(t, ·)∥2

Ḣ−1/2

≤C E1(t) ∥u1(t, ·)∥4Ḣ1 +
1

3
E2(t).
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Now, we study the second term involving the expression v · ∇θ2. Using Hardy-
Littlewood-Sobolev inequalities and Hölder inequalities (with 2/3 = 1/3 + 1/3)
we write

2
∣∣∣〈v · ∇θ2, η

〉
Ḣ−1/2

∣∣∣ ≤C∥v · ∇θ2∥Ḣ−1/2 ∥η∥Ḣ−1/2

≤C∥v · ∇θ2∥L3/2 ∥η∥Ḣ−1/2

≤C∥v∥L3∥∇θ2∥L3 ∥η∥Ḣ−1/2

≤C∥v∥Ḣ1/2∥θ2∥Ẇ 1,3 ∥η∥Ḣ−1/2 .

Then, we apply the discrete Young inequalities to obtain

C∥v∥Ḣ1/2∥θ2∥Ẇ 1,3 ∥η∥Ḣ−1/2 ≤C∥v∥2
Ḣ1/2∥θ2∥2Ẇ 1,3 + ∥η∥2

Ḣ−1/2

≤C E1(t)
(
∥θ2∥2Ẇ 1,3 + 1

)
.

Gathering these estimates we have the wished inequality (37). ■

With estimates (35), (36) and (37) at our disposal, we get back to identity (34)
to obtain

d

dt
E1(t) + E2(t) ≤ C

(
∥u1(t, ·)∥4Ḣ1 + ∥u2(t, ·)∥4Ḣ1 + ∥θ2(t, ·)∥2Ẇ 1,3 + 1

)
E1(t).

Moreover, we define the quantity

N (t) = E1(t) +
∫ t

0

E2(τ)dτ,

and by the last inequality we write

d

dt
N (t) ≤ C

(
∥u1(t, ·)∥4Ḣ1 + ∥u2(t, ·)∥4Ḣ1 + ∥θ2(t, ·)∥2Ẇ 1,3 + 1

)
N (t).

We apply the Grönwall inequality to obtain

N (t)

≤N (0) exp

(
C

∫ t

0

(
∥u1(τ, ·)∥4Ḣ1 + ∥u2(τ, ·)∥4Ḣ1 + ∥θ2(τ, ·)∥2Ẇ 1,3 + 1

)
dτ

)
≤N (0) exp

(
C
(
∥u1∥4L4

t Ḣ
1 + ∥u2∥4L4

t Ḣ
1 + ∥θ2∥2L2

tẆ
1,3
x

+ T0

))
.

Here, recall that u1,u2 ∈ E1 ⊂ L4
t Ḣ

1
x and θ2 ∈ L2

t Ẇ
1,3
x , therefore the exponen-

tial term above is well-defined. Finally, since N (0) = 0 we obtain the wished
identities v = 0 and η = 0. Proposition 1.1 is proven. ■
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Kato pour le système de Boussinesq partiellement visqueux,
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