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Abstract

We consider the steady-state Boussinesq system in the whole three-dimensional space, with the action
of external forces and the gravitational acceleration. First, for 3 < p ≤ +∞ we prove the existence
of weak Lp-solutions. Moreover, within the framework of a slightly modified system, we discuss the
possibly non-existence of Lp−solutions for 1 ≤ p ≤ 3. Then, we use the more general setting of the
Lp,∞−spaces to show that weak solutions and their derivatives are Hölder continuous functions, where
the maximum gain of regularity is determined by the initial regularity of the external forces and the
gravitational acceleration. As a bi-product, we get a new regularity criterion for the steady-state Navier-
Stokes equations. Furthermore, in the particular homogeneous case when the external forces are equal
to zero; and for a range of values of the parameter p, we show that weak solutions are not only smooth
enough, but also they are identical to the trivial (zero) solution. This result is of independent interest,
and it is also known as the Liouville-type problem for the steady-state Boussinesq system.
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1 Introduction

In this note, we consider the steady-state (time-independent) incompressible 3D Boussinesq system in the
whole three-dimensional space. For ~u : R3 → R3 a divergence-free velocity field, P : R3 → R a pressure and
θ : R3 → R the temperature of the fluid we have:−∆~u+ div(~u⊗ ~u) + ~∇P = θ~g + ~f, div(~u) = 0,

−∆θ + div(θ~u) = g,
in R3, (1)

where ~g : R3 → R3 is the gravitational acceleration and ~f : R3 → R3, g : R3 → R denote external forces
acting on each equation of this system. Moreover, with a minor loss of generality all the physical constants
have been set to be equal to one.

The system (1) describes the dynamics of a viscous incompressible fluid with heat exchanges [3, 9],
and moreover, it takes into account the physical phenomena carried out by a gravitational field ~g, like the
Earth’s gravitational field. This system arises from an approximation on a system coupling the classical
Navier-Stokes equations and the equations of thermodynamics. In this approximation, the variations of the
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density due to heat transfers are neglected in the continuity equation, but are taken into account in the
equation of the motion through an additional buoyancy term proportional to the temperature variations and
the gravitational acceleration: θ~g. In our study, we shall observe that this term yields interesting qualitative
properties to the system (1), in particular the possible non-existence of Lp-solutions for some range of values
of the parameter p.

When we set θ ≡ 0, the system (1) boils down to the classical steady-state Navier-Stokes equations:

−∆~u+ div(~u⊗ ~u) + ~∇P = ~f, div(~u) = 0, in R3, (2)

which contains many challenging open problems. We refer to the books [17] and [18] for a complete theoretical
study of these equations.

In the homogeneous case when ~f ≡ 0 and g ≡ 0, the steady state Boussinesq system has been mainly
studied in the setting of a bounded and smooth domain Ω ⊂ R3, jointly with the Dirichlet conditions:

−ν∆~u+ div(~u⊗ ~u) + ~∇P = θ~g, div(~u) = 0, in Ω,

−∆θ + div(θ~u) = 0, in Ω,

~u = ~ub, θ = θb on ∂Ω.

(3)

Here, ν > 0 is the viscosity parameter, and moreover, the given functions ~ub : ∂Ω→ R3 and θb : ∂Ω→ R are
boundary data. The qualitative properties of this system: existence, uniqueness and regularity of solutions,
deeply depend on suitable hypotheses on the functions ~g, ~ub and θb as well as on suitable hypothesis on the
boundary ∂Ω.

When ∂Ω is assumed to be a connected set of class C2, and additionally, when the viscosity parameter ν
is large enough, in [24, 25] it is proven the existence and uniqueness of weak solutions (~u, θ) ∈ L3(Ω)×L2(Ω)
to the system (3) with boundary data (~ub, θb) ∈ L2(∂Ω)× L2(∂Ω) and ~g ∈ L∞(Ω).

Thereafter, the case of more irregular boundary data was studied in [16]. For ~g ∈ L∞(Ω), the existence
and uniqueness of weak solutions (~u, θ) ∈ Lp(Ω)× Lq(Ω) to the system (3) are proven under the smallness
assumption ‖~ub‖W−1/p,p(∂Ω) + ‖θb‖W−1/q,q(∂Ω) � 1; and where the parameters p and q verify the following
set of technical conditions: with 3 ≤ p < +∞, p′ < q < +∞ (where 1/p+ 1/p′ = 1) and 3p/(3 + 2p) ≤ r.

On the other hand, the more general case when ∂Ω is of class C1,1 but not necessarily connected is
addressed in [1]. In this work, for a weaker assumption on gravitational acceleration: ~g ∈ L3/2(Ω), it is
proven the existence of weak solutions in the space H1(Ω) just considering smallness of ~ub across each
connected component ∂Ωi of the boundary ∂Ω. Moreover, it is also proven a gain of regularity of weak
solutions in the space W 1,p(Ω) with p > 2; and in the space W 2,p(Ω) with p ≥ 6/5. For more related results,
we refer to [12, 22, 23] and the references therein.

To the best of our knowledge, these qualitative properties of Lp-solutions to the system (1) (in whole
space R3) have not been studied before. It is worth highlighting the previously cited works are not longer
valid in R3 due to the lack of some of their key tools, for instance, the embedding properties of the Lp(Ω)-
spaces and the compact Sobolev embeddings. We thus use different approaches to study the existence,
regularity and uniqueness of Lp-solutions to the system (1); and our key tools are mainly based in useful
properties of the Lorentz spaces. We refer to the book [7] for a complete study of these spaces.

We recall that for a measurable function f : R3 → R and for a parameter λ ≥ 0 we define the distribution
function

df (λ) = dx
({
x ∈ R3 : |f(x)| > λ

})
,

where dx denotes the Lebesgue measure. Then, the re-arrangement function f∗ is defined by the expression

f∗(t) = inf{λ ≥ 0 : df (λ) ≤ t}.
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By definition, for 1 ≤ p < +∞ and 1 ≤ q ≤ +∞ the Lorentz space Lp,q(R3) is the space of measure functions
f : R3 → R such that ‖f‖Lp,q < +∞, where:

‖f‖Lp,q =


q

p

(∫ +∞

0
(t1/pf∗(t))qdt

)1/q

, q < +∞,

sup
t>0

t1/pf∗(t), q = +∞.

It is worth mentioning some important properties of these spaces. The quantity ‖f‖Lp,q is often used as
a norm, even thought it does not verify the triangle inequality. However, there exists an equivalent norm
(strictly speaking) which makes these spaces into Banach spaces. On the other hand, these spaces are
homogeneous of degree −3/p and for 1 ≤ q1 < p < q2 ≤ +∞ we have the continuous embedding

Lp,q1(R3) ⊂ Lp(R3) = Lp,p(R3) ⊂ Lp,q2(R3).

Finally, for p = +∞ we also have the identity L∞,∞(R3) = L∞(R3).

In our first main result, we find some smallness conditions on the external forces and the gravitational
acceleration to construct Lp-weak solutions to the system (1). Precisely, by following some of the ideas in
[2], first we solve this system in the L3,∞−space, where (to the best of our knowledge) we are able to apply
a fixed point argument. Thereafter, we show that these L3,∞−solutions also belong to the space Lp(R3)
(with 3 < p ≤ +∞) as long as the external forces verify additionally suitable conditions.

Theorem 1.1 Assume that the external forces ~f and g satisfy

(−∆)−1P(~f) ∈ L3,∞(R3) and (−∆)−1g ∈ L3,∞(R3).

Moreover, assume that the gravitational acceleration ~g satisfies

~g ∈ L3/2,1(R3).

There exists a universal quantity ε > 0 such that if

δ =
∥∥∥(−∆)−1P(~f)

∥∥∥
L3,∞

+
∥∥(−∆)−1g

∥∥
L3,∞ < ε and ‖~g‖L3/2,1 < ε,

then the following statements hold:

1. The system (1) has a weak solution (~u, θ) ∈ L3,∞(R3) satisfying and uniquely defined by the condition
‖~u‖L3,∞ + ‖θ‖L3,∞ ≤ 3δ.

2. This solution verifies (~u, θ) ∈ Lp(R3), with 3 < p ≤ +∞, as long as(−∆)−1P(~f) ∈ Lp ∩ L4(R3), (−∆)−1g ∈ Lp ∩ L4(R3), when 3 < p < 4,

(−∆)−1P(~f) ∈ Lp(R3), (−∆)−1g ∈ Lp(R3), when 4 ≤ p ≤ +∞,
and ~g ∈ L3,1(R3).

Some comments are in order. As mentioned in the first point above, the smallness assumption δ < ε yields
the existence of weak L3,∞-solutions, where this particular space naturally appears in the involved fixed point
estimates (see the Proposition 3.1 below for more details). However, the conditions (−∆)−1P(~f) ∈ L3,∞(R3)
and (−∆)−1g ∈ L3,∞(R3) allow us to consider very rough external forces, for instance, for suitable constants
η1, η2 > 0 and for the Dirac mass δ0, we can consider ~f = η1(δ0, δ0, δ0) and g = η2δ0. On the other hand, the
gravitational acceleration ~g also plays an important role in this existence result. In particular, the required
condition ~g ∈ L3/2,1(R3) is similar to the condition ~g ∈ L3/2(Ω) found in [1].
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The second point above shows a persistence property of solutions in the Lp-spaces (see the Proposition
3.2 below for all the details). Under minor technical modifications, this result is also valid in the (more
general) setting of the Lp,q−spaces.

As may observe, this last result is valid for the range of values 3 < p ≤ +∞ and it is natural to look
for similar persistence properties in the complementary range of values 1 ≤ p ≤ 3. It is thus interesting to
remark that the constraint 3 < p ≤ +∞ is not only technical (see the Remarks 2 and 3 below), but it seems
to be a phenomenological effect of the system (1). More precisely, the term θ~g in the first equation of this
system potentially yields the non-existence of Lp-solutions for 1 ≤ p ≤ 3.

To study this phenomena, let us consider the following toy model for the system (1):−∆~u+ div(ϕ~u⊗ ~u) = θ~g + ~f, div(~u = 0), |ϕ(x)| ≤ C
1+|x|2 ,

−∆θ + div(θ~u) = g.
(4)

Here, the localizing function ϕ in the nonlinear term is a merely technical requirement and, in further
research, we aim to get rid of this function. However, the main goal of this toy model is to highlight the
effects of the term θ~g in the non-existence of solutions.

Since ϕ ∈ L∞(R3) the modified bilinear term div(ϕ~u⊗ ~u) follows the same estimates of the original one
in the equation (1). See the Section 3 for all the details. Consequently, the result obtained in Theorem 1.1
is valid for the system (4). In particular, one can consider external forces ~f, g ∈ S(R3) and a gravitational
acceleration ~g ∈ S(R3) verifying

0 /∈ supp( ~̂f), 0 /∈ supp(ĝ) and 0 /∈ supp(~̂g), (5)

hence we have
(−∆)−1 ~f ∈ S(R3), (−∆)−1g ∈ S(R3) and (−∆)−1~g ∈ S(R3).

Then, we assume the smallness condition in Theorem 1.1 and there exists a solution (~u, θ) ∈ L3,∞(R3) to
the system (4) which verifies (~u, θ) ∈ Lp(R3) with 3 < p ≤ +∞. In this context, our next result reads as
follows:

Proposition 1.1 There exist ~f, g, ~g ∈ S(R3) well-prepared functions satisfying (5), such that the associated
solution (~u, θ) to the system (4) verifies ~u /∈ Lp(R3) for 1 ≤ p ≤ 3.

The proof is essentially based on the following estimate from below (see the Proposition 4.3 for more
details)

1

|x|

∣∣∣∣∫
R3

θ(y)~g(y)dy

∣∣∣∣ . |~u(x)|, |x| � 1,

which yields ~u /∈ Lp(R3) for the range of values 1 ≤ p ≤ 3. Here, the well-prepared data ~f, g and ~g ensure

that

∫
R3

θ(y)~g(y)dy 6= 0. It is also interesting to compare this result to the one obtained in [2, Theorem 3.5]

for the steady-state Navier-Stokes equations (2). In this work, it is proven a non-existence of Lp-solutions
for 1 ≤ p ≤ 3/2 and we thus observe the strongest effects of the term θ~g is the Boussinesq system (1).

In our second main result, we study another persistence problem associated with the system (1), which
is an important question to a better mathematically comprehension of this system: the gain of regularity
of weak solutions from an initial regularity in the data ~f, g and ~g. We shall consider here a fairly general
notion of weak solutions, which is given in the following:

Definition 1.1 Let ~f, g ∈ D′(R3) and let ~g ∈ L2
loc(R3). A weak solution of the coupled system (1) is a triplet

(~u, P, θ), where: ~u ∈ L2
loc(R3), P ∈ D′(R3) and θ ∈ L2

loc(R3), such that it verifies (1) in the distributional
sense.
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It is worth observing we use minimal conditions on the functions ~f, g, ~g, ~u, P and θ to ensure that all the
terms in the system (1) are well defined as distributions. In addition, we let the pressure P to be a very
general object since we only assume P ∈ D′(R3).

The Lp,∞-spaces provide us a general and suitable framework to improve the regularity of weak solutions
defined above. For 1 ≤ p < +∞ and for a regularity parameter k ∈ N, we introduce the Sobolev-Lorentz
space

Wk,p(R3) =
{
f ∈ Lp,∞(R3) : ∂αf ∈ Lp,∞(R3) for all multi-indice |α| ≤ k

}
.

Moreover, we denote by W k,∞(R3) the classical Sobolev space of bounded functions with bounded weak
derivatives until the order k. Finally, for 0 < s < 1 we shall denote by C k,s(R3) the Hölder space of Ck−
functions whose derivatives are Hölder continuous functions with parameter s. In this setting, our second
result reads as follows:

Theorem 1.2 Let (~u, P, θ) be a weak solution to the coupled system (1) given by Definition 1.1. Assume
that

~u ∈ Lp,∞(R3) and θ ∈ Lp,∞(R3), with 3 < p < +∞.

Then, if for k ≥ 0:

~f, g ∈ Wk, 3p
3+p ∩W k,∞(R3), (6)

and

~g ∈ Wk, 3p
3+p ∩W k,∞(R3), (7)

it follows that ~u ∈ Wk+2,p(R3), P ∈ Wk+1,p(R3) and θ ∈ Wk+2,p(R3). Moreover, we have

~u ∈ C k+1,s(R3), P ∈ C k,s(R3) and θ ∈ C k+1,s(R3), with s = 1− 3/p.

In (6) and (7) the parameter k measures the initial regularity of the data, which yields a gain of regularity
of weak solutions of the order k + 2. This (expected) maximum gain of regularity is given by the effects of
the Laplacian operator in both equations of the system (1). We refer to Remark 6 for more details.

Let us briefly explain the general strategy of the proof, which bases on two key ideas. First, by assuming
~u ∈ Lp,∞(R3) and θ ∈ Lp,∞(R3) and by using useful properties of the parabolic (time-dependent) Boussinesq
system ( given in the equation (59)), we prove that ~u and θ are bounded functions on R3. Thereafter, we use
a bootstrap argument to show that ~u ∈ Wk+2,p(R3) and θ ∈ Wk+2,p(R3). Finally, we use the more general
setting of the Morrey spaces to conclude the wished Hölder regularity.

These ideas can also be applied to the other relevant coupled system of the fluid dynamics, for instance,
the magneto-hydrodynamics equations and some variations of the Boussinesq system as the Bérnard system
and the magnetic-Bérnard system. In particular, when we set θ ≡ 0 the system (1) agrees with the Navier-
Stokes equations (2); and as a direct consequence of the theorem above we obtain a new regularity criterion
for these equations:

Corollary 1.1 Let (~u, P ) ∈ L2
loc(R3) × D′(R3) be a weak solution to the equation (2). If ~u ∈ Lp,∞(R3)

with p > 3 and if the external force ~f verifies (6) for some k ≥ 0, then we have ~u ∈ Wk+2,p(R3) and
P ∈ Wk+1,p(R3). In addition, we have ~u ∈ C k+1,s(R3) and P ∈ C k,s(R3) with s = 1− 3/p.

Another interesting consequence of Theorem 1.2 arises when we consider the homogeneous system (when
~f ≡ 0 and g ≡ 0): −∆~u+ div(~u⊗ ~u) + ~∇P = θ~g, div(~u) = 0,

−∆θ + div(θ~u) = 0,
in R3, (8)
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and then, the gain of regularity of weak solution is now determined by the gravitational acceleration ~g
as long as it verifies (7). In particular, we have (~u, P, θ) ∈ C∞(R3), provided that ~u, θ ∈ Lp,∞(R3) with

3 < p < +∞ and ~g ∈
⋂
k≥0

Wk, 3p
3+p ∩W k,∞(R3).

Regularity of weak solutions to the homogeneous system (8) is also one of the key assumptions when
studying another relevant problem: the uniqueness of the trivial solution (~u, P, θ) = (0, 0, 0). This is problem
is commonly known as the Liouville-type problem for the homogeneous Boussinesq system (8) and, to the
best of our knowledge, it has not been studied before. Thus, in our third main result, we find a range of
values of the parameter p for which Lp,q(R3)-solutions to the system (8) vanish identically.

Theorem 1.3 Let (~u, P, θ) be a weak solution to the coupled homogeneous system (8) given by Definition
1.1. The trivial solution (~u, P, θ) = (0, 0, 0) in uniquely determined in the following cases:

1. When ~u ∈ L
9
2
,q(R3), θ ∈ L

9
2
,q(R3) with 1 ≤ q < +∞, and ~g ∈ W1,9/2 ∩W 1,∞(R3).

2. When ~u ∈ Lp,∞(R3), θ ∈ Lp,∞(R3) and ~g ∈ W1,p ∩W 1,∞(R3), with 3 < p < 9
2 .

The proof of this theorem is based on fine local estimates for each equation in the system (8), which are
known as the Caccioppoli-type estimates (see the Proposition 6.1 below). To do this, a minimal regularity
of solutions is required, more precisely, we need that ~u, θ ∈ C2

loc(R3) and P ∈ C1
loc(R3). Thus, this regularity

is ensured by the assumptions on ~u, θ and ~g given above; and by a direct application of Theorem 1.2.

The Liouville-type problem has been extensively studied in the homogeneous Navier-Stokes equations
(2) (when ~f ≡ 0). See, for instance, [4, 5, 6, 8, 19, 20, 21] and the references therein. In this sense, this
result is a generalization of these previous works to the coupled framework of the system (8). In particular,
the first point above generalizes the well-known Galdi’s result [11, Theorem X.9.5]. Here, it is important to
emphasize that the Liouville problem for the equation (2) in the largest space L9/2,∞(R3) and in the setting
of the Lebesgue or Lorentz spaces with parameter p > 9/2 is still an open question far from obvious. The
second point above generalizes to the system (8) some previous results obtained in [13, Theorem 1] for the
equation (2). Here, the constraint 3 < p < 9/2 allows us to work in the largest space Lp,∞(R3).

Finally, let us mention that in future research some recent results on the Liouville problem for the
equation (2), which consider more sophisticated functional spaces, could be also adapted to the system (8),
but this come out the scope of this note.

Organization of the paper. In Section 2 we summarize some useful properties of the Lp,q-spaces.
Section 3 and 4 are devoted to the proof of Theorem 1.1 and Proposition 1.1 respectively. Then, in Section
5 we give a proof of Theorem 1.2; and this note finishes with the proof of Theorem 1.3 given in Section 6.1.

2 Preliminaries

For the completeness of this note, we summarize here some well-known results which will be useful in the
sequel. In the forthcoming estimates, C > 0 is a generic constant.

Lemma 2.1 (Young inequalities) Let 1 < p, p1, p2 < +∞ and 1 ≤ q, q1, q2 ≤ +∞. There exists a
constant Ci > 0, which depends on the parameters above, such that the following estimates hold:

1. ‖f ∗ h‖Lp,q ≤ C1‖f‖Lp1,q1 ‖h‖Lp2,q2 , with 1 + 1
p = 1

p1
+ 1

p2
, 1
q ≤

1
q1

+ 1
q2

and C1 = C p
(

p1
p1−1

)(
p2
p2−1

)
.

2. ‖f ∗ h‖Lp,q ≤ C2 ‖f‖L1 ‖h‖Lp,q , with C2 = C p2

p−1 .

3. ‖f ∗ h‖L∞ ≤ C3 ‖f‖Lp,q ‖h‖Lp′,q′ , with 1 = 1
p + 1

p′ , 1 ≤ 1
q + 1

q′ and C3 = C
(

p
p−1

)(
p′

p′−1

)
.
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For a proof see [7, Section 1.4.3 ].

Lemma 2.2 (Hölder inequalities)

1. Let f ∈ Lp1,q1(R3) and h ∈ Lp2,q2(R3) with 1 ≤ p1, p2 < +∞, 1 ≤ q1, q2 ≤ +∞ verifying the
relationships 1 = 1/p1 + 1/p2 and 1 = 1/q1 + 1/q2. Then we have fh ∈ L1(R3) and it holds
‖fh‖L1 ≤ C‖f‖Lp1,q1 ‖h‖Lp2,q2 .

2. Moreover, for 1 ≤ p, p1, p2 < +∞, 1 ≤ q, q1, q2 ≤ +∞ and with the relationships 1/p = 1/p1 + 1/p2

and 1/q = 1/q1 + 1/q2; we have fh ∈ Lp,q(R3) and it holds ‖fh‖Lp,q ≤ C‖f‖Lp1,q1 ‖h‖Lp2,q2 .

A proof can be found in [7, Theorems 1.2.6 and 1.4.1].

Lemma 2.3 (Interpolation inequalities)

1. Let f ∈ Lp,∞(R3) ∩ L∞(R3), with 1 ≤ p < +∞. Then, for all 1 ≤ σ < +∞ we have f ∈ Lpσ(R3) and

the following estimate holds: ‖f‖Lpσ ≤ C ‖f‖
1
σ
Lp,∞ ‖f‖

1− 1
σ

L∞ .

2. Let f ∈ Lp1,q1(R3) ∩ Lp2,q2(R3) where 1 < p1 < p < p2 < +∞ and 1 ≤ q, q1, q2 ≤ +∞. Then we have
f ∈ Lp,q(R3) and it holds: ‖f‖Lp,q ≤ C‖f‖σ1Lp1,q1 ‖f‖

1−σ1
Lp2,q2 , where 0 < σ1 < 1 depends on p, p1 and p2.

For a proof see [7, Theorem 1.1.2 ] and [17, Proposition 2.3].

Lemma 2.4 (Lorentz-Besov embedding) For all t > 0 it holds: t
3
2p ‖et∆f‖L∞ ≤ C ‖f‖Lp,∞, with 1 ≤

p < +∞.

This estimate is a direct consequence of the continuous embedding Lp,∞(R3) ⊂ Ḃ
− 3
p
,∞

∞ (R3). See [18, Page

171]. We recall that the homogeneous Besov space Ḃ
− 3
p
,∞

∞ (R3) can be characterized as the space of temperate

distributions f ∈ S ′(R3) such that sup
t>0

t
3
2p ‖et∆f‖L∞ < +∞.

Lemma 2.5 (Riesz transforms) For i = 1, 2, 3 let Ri =
∂i√
−∆

be the i-th Riesz transform. Then, for

i, j = 1, 2, 3 the operator RiRj is continuous in the space Lp,∞(R3) (with 1 < p < +∞) and we have
‖RiRj(f)‖Lp,∞ ≤ C‖f‖Lp,∞. In particular, the Leray’s projector P is a bounded operator in the space
Lp,∞(R3).

A proof can be found in [15, Lemma 4.2]. Finally, we shall use the following result linking the Morrey spaces
and the Hölder regularity of functions. For a proof see [10, Proposition 3.4]. Recall that for 1 ≤ p < +∞
the homogeneous Morrey space Ṁ1,p(R3) is defined as the space of locally finite Borel measures dµ such
that

sup
x0∈R3, R>0

R
3
p

(
1

|B(x0, R)|

∫
B(x0,R)

d|µ|(x)

)
< +∞. (9)

Lemma 2.6 (Hölder regularity) Let f ∈ S ′(R3) such that ~∇f ∈ Ṁ1,p(R3), with p > 3. There exists a
constant C > 0 such that for all x, y ∈ R3 we have |f(x)− f(y)| ≤ C ‖~∇f‖Ṁ1,p |x− y|1−3/p.
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3 Proof of Theorem 1.1

First note that the system (1) can be rewritten as the following (equivalent) problem:−∆~u+ P(div(~u⊗ ~u)) = P(θ~g) + P(~f), div(~u) = 0,

−∆θ + div(θ~u) = g,
(10)

hence we obtain the integral formulations:

~u = − 1

−∆
(P(div(~u⊗ ~u))) +

1

−∆

(
P (θ~g)

)
+

1

−∆

(
P(~f)

)
, (11)

θ = − 1

−∆
(div(θ~u)) +

1

−∆
(g). (12)

In the next propositions, we shall prove each point stated in Theorem 1.1.

Proposition 3.1 Assume that
1

−∆

(
P(~f)

)
∈ L3,∞(R3),

1

−∆
(g) ∈ L3,∞(R3) and ~g ∈ L3/2,1(R3). There

exists a universal constant ε1 > 0 (defined in (21)) such that if

δ =

∥∥∥∥ 1

−∆

(
P(~f)

)∥∥∥∥
L3,∞

+

∥∥∥∥ 1

−∆
(g)

∥∥∥∥
L3,∞

< ε1 and ‖~g‖L3/2,1 < ε1, (13)

then the system (11)-(12) has a solution (~u, θ) ∈ L3,∞(R3) satisfying and uniquely defined by ‖~u‖L3,∞ +
‖θ‖L3,∞ ≤ 3δ.

Proof. To prove this proposition, we shall use the next version of the Picard’s fixed point theorem. The
proof is rather standard but, for the reader’s convenience we give a sketch.

Lemma 3.1 (Picard’s fixed point) Let (E, ‖ · ‖E) be a Banach space and let u0 ∈ E be an initial datum
such that ‖u0‖E ≤ δ. Assume that B : E × E → E is a bilinear application and that L : E → E is a linear
application. Assume moreover the following controls:

‖B(u, v)‖E ≤ CB‖u‖E‖u‖E , ‖L(u)‖E ≤ CL‖u‖E , (14)

for all u, v ∈ E, where the continuity constants of these applications verify:

0 < 3CL < 1, 0 < 9δCB < 1 and CL + 6δCB < 1. (15)

Then the equation u = u0 +B(u, u) + L(u) admits a unique solution u ∈ E such that ‖u‖E ≤ 3δ.

Proof. From the initial datum u0 we consider the iterative equation: un+1 = u0 + B(un, un) + L(un) for
n ∈ N. By the boundness of the operators B(·, ·) and L(·) given in (14), and moreover, by the first and the
second condition in (15), we can prove that ‖un+1‖E ≤ 3δ for all n ∈ N. On the other hand, always by (14)
we have the estimate ‖un+1 − un‖E ≤ (CL + 6δCB)n‖u1 − u0‖E . Finally, since 0 < CL + 6δCB < 1 the rest
of the proof follows from well-known arguments. �

Withing the framework of this lemma, we set the Banach space

E =
{

(~u, θ) ∈ L3,∞(R3) : div(~u) = 0
}
,

with its natural norm ‖(~u, θ)‖L3,∞ = ‖~u‖L3,∞ + ‖θ‖L3,∞ . Moreover, from the equations (11) and (12) we set

u =

(
~u
θ

)
, u0 =

 1
−∆

(
P(~f)

1
−∆(g)

 , (16)
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and

B(u, u) =

(
− 1
−∆ (P(div(~u⊗ ~u)))

− 1
−∆ (div(θ~u))

)
, L(u) =

(
1
−∆

(
P (θ~g)

)
0

)
. (17)

We shall construct a solution to the fixed point problem:

u = u0 +B(u, u) + L(u). (18)

By the hypothesis of Proposition 3.1 we directly have u0 ∈ E, so we must verify the controls given in
(14) with constants CB, CL > 0 satisfying (15); and where the quantity δ > 0 is defined in (13).

Let us start by studying each component of the bilinear term B(u, u). We remark that in the Fourier

level the operator
div

−∆

(
P (·)

)
has a symbol m̂1(ξ) =

(
m̂1,i,j,k(ξ)

)
1≤i,j,k≤3

, where each m̂1,i,j,k is a C∞−
function outside the origin, and moreover, it is a homogeneous function of degree −1. Consequently, in
the spatial variable, the action of this operator can be seen as a product of convolution with the tensor
m1 =

(
m1,i,j,k

)
1≤i,j,k≤3

, where m1,i,j,k is a C∞− function outside the origin and homogeneous of degree −2.

In particular we have m1 ∈ L
3
2
,∞(R3).

Then, by the first point of Lemma 2.1 (with p = 3, p1 = p2 = 3/2 and q = q1 = q2 = +∞) and by the
second point of Lemma 2.2 (with p = 3/2, p1 = p2 = 1/3 and q = q1 = q2 = +∞) we write∥∥∥∥ 1

−∆
(P(div(~u⊗ ~u)))

∥∥∥∥
L3,∞

= ‖m1 ∗ (~u⊗ ~u)‖L3,∞ ≤ C1‖m1‖L3/2,∞‖~u⊗ ~u‖L3/2,∞

≤C1‖m1‖L3/2,∞ ‖~u‖2L3,∞ ,

where we set the constant CB,1 = C1‖m1‖L3/2,∞ .

The other term − 1

−∆
(div(θ~u)) follows the same estimates: we denote by m2 ∈ L3/2,∞(R3) the convo-

lution tensor of the operator
1

−∆
(div(·)) and we write∥∥∥∥− 1

−∆
(div(θ~u))

∥∥∥∥
L3,∞

≤ C1‖m2‖L3/2,∞ ‖θ‖L3,∞ ‖~u‖L3,∞ , CB,2 = C1‖m2‖L3/2,∞ .

With these estimates at hand, we set the constant CB = max(CB,1, CB,2) and we get

‖B(u, u)‖L3,∞ ≤ CB ‖u‖2L3,∞ . (19)

We study now the linear term L(u). In this case we remark that the operator
1

−∆
(P(·)) has a symbol

m̂3(ξ) which is a tensor containing C∞- functions outside the origin and homogeneous of degree −2. Then,

in the spatial variable we have
1

−∆
(P(θ~g)) = m3 ∗ θ~g, where the tensor m3 is smooth outside the origin

and homogeneous of degree −1. Consequently, it verifies m3 ∈ L3,∞(R3).

By the second point of Lemma 2.1 and by the first point of Lemma 2.2 (with p1 = 3/2, p2 = 3, q1 = 1,
q2 = +∞) we write ∥∥∥∥ 1

−∆
(P(θ~g))

∥∥∥∥
L3,∞

= ‖m3 ∗ θ~g‖L3,∞ ≤ C2‖m3‖L3,∞‖θ~g‖L1

≤C2‖m3‖L3,∞‖~g‖L3/2,1 ‖θ‖L3,∞ .

We set the constant CL = C2‖m3‖L3,∞‖~g‖L3/2,1 and we have the estimate

‖L(u)‖L3,∞ ≤ CL‖u‖L3,∞ . (20)
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Once we have the constants CB and CL given above, we must verify the constraints given in (15). To

verify the first constraint we set ‖~g‖L3/2,1 <
1

3C2‖m3‖L3,∞
to get CL <

1
3 . With this inequality the second

and the third constraint in (15) are satisfied as long as δ <
1

9CB
. We thus set

ε1 < min

(
1

3C2‖m3‖L3,∞
,

1

9CB

)
, (21)

and Proposition 3.1 follows from the assumption (13) and Lemma 3.1. �

With this first result, now we are able to prove that the solution (~u, θ) ∈ L3,∞(R3) also belongs to the
space Lp(R3) with 3 < p < +∞, provided that the external forces verify suitable supplementary hypotheses.
In the case of the Lorentz space Lp,q(R3) (with 1 ≤ q ≤ +∞) the proof follows the same lines, so it is enough
to focus on the Lebesgue spaces.

Proposition 3.2 Let (~u, θ) ∈ L3,∞(R3) be the solution to the equations (11)-(12) constructed in Proposition
3.1. Let δ > 0 be the quantity given in (13) and ε1 > 0 defined in (21).

Assume in addition that
1
−∆

(
P(~f)

)
∈ Lp ∩ L4(R3), 1

−∆(g) ∈ Lp ∩ L4(R3), 3 < p < 4,

1
−∆

(
P(~f)

)
∈ Lp(R3), 1

−∆(g) ∈ Lp(R3), 4 ≤ p ≤ +∞,
and ~g ∈ L3,1(R3). (22)

There exists a universal quantity 0 < ε < ε1 (defined in (34)), such that if δ < ε then we have (~u, θ) ∈ Lp(R3)
with 3 < p ≤ +∞.

Proof. Recall that the solution (~u, θ) ∈ L3,∞(R3) to the equations (11)-(12) is obtained as the limit (in the
strong topology of the space L3,∞(R3)) of the sequence (un)n∈N, which defined by the iterative expression:

un+1 = u0 +B(un, un) + L(un), for n ≥ 0, (23)

and where u0, B(un, un) and L(un) are given in the expressions (16) and (17) respectively. We shall use
this sequence to prove that (~u, θ) ∈ Lp(R3). We thus write

‖un+1‖Lp ≤ ‖u0‖Lp + ‖B(unun)‖Lp + ‖L(un)‖Lp , (24)

where, by the assumption (22) we have ‖u0‖Lp < +∞. On the other hand, in order to estimate the bilinear
term we recall that its first component writes down as m1 ∗ (~u ⊗ ~u) with m1 ∈ L3/2,∞(R3). Then, by the
first point of Lemma 2.1 (with p = q, p1 = 3/2, p2 = 3p/(3 + p), q1 = +∞ and q2 = p2) we get

‖m1 ∗ (~u⊗ ~u)‖Lp ≤ C1(p) ‖m1‖L3/2,∞‖~u⊗ ~u‖
L

3p
3+p

, with 0 < C1(p) = C
3p2

2p− 3
. (25)

Remark 1 Note that the constant C1(p) given above blows-up at p = 3
2 and p = +∞. This fact yields the

first constraint 3
2 < p < +∞, which is the same in [2].

Then, from the estimate (25) and by second point of Lemma 2.2 (remark that (3 + p)/3p = 1/3 + 1/p) we
write

‖m1 ∗ (~u⊗ ~u)‖Lp ≤ C1(p)‖m1‖L3/2,∞ ‖~u‖Lp ‖~u‖L3,∞ .

Moreover, recall that the sequence (un)n∈N defined in (23) verifies ‖un‖L3,∞ ≤ 3δ and we thus obtain

‖m1 ∗ (~u⊗ ~u)‖Lp ≤ 3δC1(p) ‖m1‖L3/2,∞ ‖~u‖Lp .
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The second component of the bilinear form B(un, un) essentially follows the same arguments and we
have ∥∥∥∥ 1

−∆
div(θ~g)

∥∥∥∥
Lp

= ‖m2 ∗ (θ~u)‖Lp ≤ 3δC1(p) ‖m2‖L3/2,∞ ‖θ‖Lp . (26)

With these estimates at our disposal, for the sake of simplicity we introduce the constant Cm =
max(‖m1‖L3/2,∞ , ‖m2‖L3/2,∞) and we obtain the estimate

‖B(un, un)‖Lp ≤ 3δCmC1(p)‖un‖Lp . (27)

We study now the linear term L(un). Let 1 < p1 < 3/2 defined by the relationship 1/p1 = 2/3 + 1/p.

Remark 2 Observe that the relationship 1/p1 = 2/3 + 1/p yields the new constraint 3 < p < +∞.

By the first point of Lemma 2.1 (since 1/p1 = 2/3 + 1/p we have 1 + 1/p = 1/3 + 1/p1, hence we set
p2 = 3, q2 = +∞ and q = p, q1 = p1) and by using again the second point of Lemma 2.2 (recall that
1/p1 = 2/3 + 1/p) we write∥∥∥∥ 1

−∆
(P(θ~g))

∥∥∥∥
Lp

= ‖m3 ∗ (θ~u)‖Lp ≤ C ′1(p)‖m3‖L3,∞ ‖θ~g‖Lp1 ≤ C
′
1(p)‖m3‖L3,∞ ‖~g‖L3/2 ‖θ‖Lp

≤C ′1(p)‖m3‖L3,∞ ‖~g‖L3/2,1 ‖θ‖Lp .

Remark 3 We have C
′
1(p) = C 3p2

p−3 , which is well-defined as long as 3 < p < +∞.

For the sake of simplicity, we introduce the constant C
′
m = ‖m3‖L3,∞ and we thus get

‖L(un)‖Lp ≤
(
C
′
mC

′
1(p)‖~g‖L3/2,1

)
‖un‖Lp . (28)

Once we have the estimates (27) and (28), we get back to the inequality (24) to write

‖un+1‖Lp ≤ ‖u0‖Lp +
(

3δCmC1(p) + C
′
mC

′
1(p) ‖~g‖L3/2,1

)
‖un‖Lp , for n ≥ 0 and 3 < p < +∞. (29)

At this point, we need to find additional constraints on the quantities δ and ‖~g‖L3/2,1 to obtain(
3δCmC1(p) + C

′
mC

′
1(p) ‖~g‖L3/2,1

)
<

1

2
. (30)

With this inequality we will able to prove that the sequence (un)n∈N is uniformly bounded in the space
Lp(R3) (see the estimate (33) below) and consequently its limit verifies u ∈ Lp(R3). However, there is a
problem to overcome: the quantities C1(p) and C

′
1(p) (defined in the expression (25) and the Remark 3

respectively) are not bounded in the whole interval 3 < p < +∞. So, we shall use the following strategy:
first we will prove the wished inequality (30) in the interval 4 ≤ p ≤ 7 to obtain u ∈ Lp(R3) for these
values of p. Thereafter, we shall use this information to get that u ∈ Lp(R3) in the intervals 3 < p < 4,
7 < p < +∞ and the value p = +∞.

• The case 4 ≤ p ≤ 7. We get back to the expression of the quantity C1(p) given in (25) and we define
0 < M = max

4≤p∈7
C1(p) < +∞. Then, we set the new constraint on the parameter δ (which already

verifies (13)) as follows:

3δCmM <
1

4
. (31)
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Similarly, we get back to the expression of the quantity C
′
1(p) given in Remark 3 and we define

0 < M ′ = max
4≤p≤7

C
′
1(p) < +∞. We thus set the new constraint on the quantity ‖~g‖L3/2,1 (which also

verifies (13)) as the next one:

C
′
mM

′‖~g‖L3/2,1 <
1

4
. (32)

By these new constraints, for all 4 ≤ p ≤ 7 we have the inequality (30); and we get back to the
inequality (29) to write

‖un+1‖Lp ≤ ‖u0‖Lp +
1

2
‖un‖Lp , for all n ≥ 0.

Hence, we iterate to obtain the uniform control

‖un+1‖Lp ≤

(
+∞∑
k=0

1

2k

)
‖u0‖Lp , for all n ≥ 0, (33)

and then we have u = (~u, θ) ∈ Lp(R3) with 4 ≤ p ≤ 7.

Moreover, we emphasize that this fact holds true as long as the quantities δ and ‖~g‖L3/2,1 verify the
set of constraints (13), (31) and (32), which can be jointly written as

δ, ‖~g‖L3/2,1 < min

(
1

12CmM
,

1

4C ′mM
′ , ε1

)
= ε. (34)

• The case 3 < p < 4. By the assumption (22) we have u0 ∈ L4(R3) and by the uniform control (33)
we have u ∈ L4(R3). Moreover, recall that by Proposition (3.1) we also have u ∈ L3,∞(R3) and by the
second point of Lemma 2.3 we have u = (~u, θ) ∈ Lp(R3) with 3 < p < 4.

• The case 7 < p < +∞. First recall that by assumption (22) we have u0 ∈ Lp(R3) and since we also
u0 ∈ L3,∞(R3) by the standard interpolation inequalities we obtain u0 ∈ L4 ∩ L7(R3). Thus, always
by the uniform control (33) we obtain u ∈ L4 ∩ L7(R3) and then by the second point of Lemma 2.3
we have u ∈ L6,2(R3).

With this information we can prove that B(u, u) ∈ L∞(R3). Indeed, this bilinear form essentially
writes down as m ∗ (u ⊗ u) where the tensor m ∈ L3/2,∞(R3) denotes each tensor mi (with i = 1, 2)
in each component of B(u, u) (see the expression (17)). Then, since u ∈ L6,2(R3) by the second point
of Lemma 2.2 we obtain u⊗ u ∈ L3,1(R3); and since m ∈ L3/2,∞(R3) by the third point of Lemma 2.1
we have

B(u, u) ∈ L∞(R3). (35)

As we also have B(u, u) ∈ L3,∞(R3) (see the estimate (19)) and by using again the second point of
Lemma 2.3 we obtain B(u, u) ∈ Lp(R3) with p ∈ (7,+∞).

Now, we shall verify that L(u) ∈ L∞(R3). Indeed, by the third point of Lemma 2.1 we write∥∥∥∥ 1

−∆
(P(θ~g))

∥∥∥∥
L∞

= ‖m3 ∗ (θ~g)‖L∞ ≤ C3 ‖m3‖L3,∞ ‖θ~g‖L3/2,1 .

But, since θ ∈ L3,∞(R3) and ~g ∈ L3,1(R3) (see the assumption (22)) by the second point of Lemma
2.2 we get ‖θ~g‖L3/2,1 ≤ ‖θ‖L3,∞‖~g‖L3,1 . We thus obtain

L(u) ∈ L∞(R3). (36)

As before, since we also have L(u) ∈ L3,∞(R3) (see the estimate (20)) we use using the second
point of Lemma 2.3 to conclude that L(u) ∈ Lp(R3) with p ∈ (7,+∞). Consequently, we have
u = (~u, θ) ∈ Lp(R3) with 7 < p < +∞.
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• The case p = +∞. We just remark that from the information given in (35) and (36) we have u =

(~u, θ) ∈ L∞(R3) as long as u0 ∈ L∞(R3), which holds true under the assumption
1

−∆

(
P(~f)

)
∈ L∞(R3)

and
1

−∆
(g) ∈ L∞(R3). Proposition 3.2 is proven. �

Once we have Propositions 3.1 and 3.2, Theorem 1.1 is now proven. �

4 Proof of Proposition 1.1

The proof is divided into three main steps, which we shall study separately in the next (technical) propo-
sitions. In addition, we recall that in all this section the external forces ~f, g ∈ S(R3) and the gravitational
acceleration ~g ∈ S(R3) verify (5) and we have (−∆)−1 ~f ∈ S(R3), (−∆)−1g ∈ S(R3) and (−∆)−1~g ∈ S(R3).

Step 1. Pointwise decaying properties. We start by proving the following pointwise decaying
properties of solutions to the system (4).

Proposition 4.1 Let ~f, g, ~g ∈ S(R3) verifying (5). Moreover, let ε > 0 be the quantity defined in (34).

There exists a universal quantity 0 < ε2 < ε, such that if

δ2 = ‖(−∆)−1 ~f‖L3,∞ + ‖ |x|(−∆)−1 ~f‖L∞ + ‖(−∆)−1g‖L3,∞ + ‖ |x|(−∆)−1g‖L∞ < ε2, (37)

and
‖~g‖L3/2,1 + ‖(−∆)−1|~g|‖L∞ < ε2, (38)

then the solution (~u, θ) ∈ L3,∞(R3)∩L∞(R3) to the system (4), given by Theorem 1.1, verifies the following
pointwise estimates:

|~u(x)| ≤ C1

1 + |x|
, |θ(x)| ≤ C2

1 + |x|
, x ∈ R3, (39)

with constants C1, C2 > 0 depending on ~f, g, ~g, ~u and θ, but independent on x.

Remark 4 It is worth emphasizing this result also holds true for the (original) system (1), since here we
only need the information ϕ ∈ L∞(R3); and we thus can set ϕ ≡ 1.

Proof. First, remark that the solution (~u, θ) ∈ L3,∞(R3) is constructed as in the proof of Proposition 3.1:
we assume the stronger inequality (37) (remark that δ < δ2, where δ is defined in (13)) and we solve the
fixed point equation

u = u0 +Bϕ(u, u) + L(u) (40)

in the Banach space L3,∞(R3). Here, the terms u, u0 are given in (16) and the term L(u) is given in (17)
(without the Leray’s projector P). Moreover we have

Bϕ(u, u) =

(
− 1
−∆ (P(div(ϕ~u⊗ ~u)))

− 1
−∆ (div(θ~u))

)
. (41)

This solution is uniquely defined by the condition ‖u‖L3,∞ ≤ 3δ2.

On the other hand, we introduce the weighted L∞- space:

L∞1 (R3) =
{
f : R3 → R3 / f is measurable and |x|f ∈ L∞(R3)

}
, (42)

which verifies L∞1 (R3) ⊂ L3,∞(R3). Thus, we shall solve the problem (40) in the smaller Banach space
L∞1 (R3) with the norm

‖f‖1 = ‖ |x|f‖L∞ + ‖f‖L3,∞ .
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Since ϕ ∈ L∞(R3) the quantity ‖Bϕ(u, u)‖L3,∞ is similarly estimated as in (19) and we have

‖Bϕ(u, u)‖L3,∞ ≤ ‖ϕ‖L∞CB‖u‖2L3,∞ . (43)

Moreover, the quantity ‖L(u)‖L3,∞ was already estimated in (20). So, it remains to estimate the quantities
‖ |x|Bϕ(u, u)‖L∞ and ‖ |x|L(u)‖L∞ . The first quantity follows the same estimates in [2, Lemma 3.6] and we
can write

‖ |x|Bϕ(u, u)‖L∞ ≤ C‖ϕ‖L∞‖ |x|u‖2L∞ . (44)

To study the second quantity, for x 6= 0 fixed we write∣∣∣∣ 1

−∆
(θ~g)(x)

∣∣∣∣ ≤ ∫
R3

1

|x− y|
|θ(y)| |~g(y)|dy ≤

(∫
|y|≤|x|/2

+

∫
|y|>|x|/2

)
1

|x− y|
|θ(y)| |~g(y)|dy

= I1 + I2.

To estimate the term I1, we remark that since |y| ≤ |x|/2 we have |x− y| ≥ |x|/2 and by the first point of
Lemma 2.2 we can write

I1 ≤
C

|x|

∫
|y|≤|x|/2

|θ(y)| |~g(y)|dy ≤ ‖θ~g‖L1 ≤
C

|x|
‖θ‖L3,∞ ‖~g‖L3/2,1 .

To estimate the term I2, since |y| > |x|/2 we can use expression ‖θ‖L∞1 to get

I2 ≤C‖θ‖L∞1

∫
|y|>|x|/2

1

|x− y| |y|
|~g(y)|dy ≤ C

|x|
‖θ‖L∞1

∫
|y|>|x|/2

1

|x− y|
|~g(y)|dy

≤ C

|x|
‖θ‖L∞1

∫
R3

1

|x− y|
|~g(y)|dy ≤ C

|x|
‖θ‖L∞1 (−∆)−1|~g(x)| ≤ C

|x|
‖θ‖L∞1 ‖(−∆)−1|~g|‖L∞ .

From these estimate we obtain

‖ |x|L(u)‖L∞ ≤ C (‖~g‖L3/2,1 + ‖(−∆)−1|~g|‖L∞)‖θ‖1. (45)

Once we have the estimates (43), (43) and (45), and moreover, by the estimate (20) we are able to write

‖Bϕ(u, u)‖1 ≤ max(CB, C)‖ϕ‖L∞‖u‖21, ‖L(u)‖ ≤ max(C,CL)(‖~g‖L3/2,1 + ‖(−∆)−1|~g|‖L∞)‖u‖1.

We set a quantity 0 < ε2 < ε small enough such that the constraints given in (15) hold. We also assume
(37 ) and (38). Consequently, by Lemma 3.1 there exists a solution u = (~u, θ) ∈ L∞1 to the equation (40)
which is uniquely determined by the condition ‖u‖1 ≤ 3δ2. But, since ‖u‖L3,∞ ≤ ‖u‖1 this solution is the
same to the one given by Theorem 1.1.

Finally, recall that this solution also verifies u ∈ L∞(R3), hence we obtain the wished estimates (39).
Proposition 4.1 is proven. �

Step 2. Asymptotic profile. Once we have the estimates (39), in the next proposition we develop an
asymptotic profile for the velocity ~u.

Proposition 4.2 Within the framework of Proposition 4.1, the velocity ~u has the asymptotic behavior

~u(x) =
1

|x|

(∫
R3

θ(y)~g(y)dy

)
+ o

(
1

|x|

)
, |x| → +∞. (46)

Remark 5 To the best of our knowledge, the identity (46) strongly depends on the well-prepared function
ϕ. In particular, to justify our estimates, here we need the pointwise inequality |ϕ(x)| . 1

1+|x|2 .
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Proof. Recall that ~u verifies the fixed point equation

~u(x) =
1

−∆
(θ~g)(x)− 1

−∆
(div(ϕ~u⊗ ~u))(x) +

1

−∆
(~f)(x). (47)

Our starting point is to prove that the first term on the right-hand side splits as follows:

1

−∆
(θ~g)(x) =

1

|x|

(∫
R3

θ(y)~g(y)dy

)
+ o

(
1

|x|

)
, |x| → +∞. (48)

Indeed, for |x| > 0 fixed large enough we write

1

−∆
(θ~g)(x) =

∫
R3

1

|x− y|
θ(y)~g(y)dy

=
1

|x|

(∫
R3

θ(y)~g(y)dy

)
+

∫
R3

(
1

|x− y|
− 1

|x|

)
θ(y)~g(y)dy.

The, for i = 1, 2, 3 we shall prove that

∫
R3

(
1

|x− y|
− 1

|x|

)
θ(y)gi(y)dy = o

(
1

|x|

)
. We thus write

∫
R3

(
1

|x− y|
− 1

|x|

)
θ(y)gi(y)dy =

(∫
|y|≤|x|/2

+

∫
|y|>|x|/2

)(
1

|x− y|
− 1

|x|

)
θ(y)gi(y)dy = I1 + I2.

To estimate the term I1, recall that the function 1
|x| is smooth outside the origin and by the mean value

theorem, for w = α(x − y) + (1 − α)x with 0 < α < 1, we write
∣∣∣ 1
|x−y| −

1
|x|

∣∣∣ ≤ 1
|w|2 |y|. Moreover, remark

that w = x − αy and as we have |y| ≤ |x|/2 then we get |w| ≥ |x| − α|y| ≥ |x| − |y| ≥ |x|/2. We thus

obtain
∣∣∣ 1
|x−y| −

1
|x|

∣∣∣ ≤ C
|x|2 |y|. With this inequality at hand, and moreover, by recalling that gi ∈ S(R3) and

θ ∈ L∞(R3), the term I1 verifies

I1 ≤
C

|x|2
‖θ‖L∞

∫
|y|≤|x|/2

|y||gi(y)|dy ≤ C

|x|2
‖θ‖L∞ ‖ | · |gi‖L1 . (49)

To estimate the term I2 we write

I2 ≤
∫
|y|>|x|/2

1

|x− y|
|θ(y)||gi(y)|dy +

1

|x|

∫
|y|>|x|/2

|θ(y)||gi(y)|dy = I2,1 + I2,2.

Then, in order to study the term I2,1, we recall that θ verifies the pointwise estimate (39), and moreover,
since gi ∈ S(R3) we have |gi(y)| ≤ C

|y|β , with 2 < β < 3. We thus get

I2,1 ≤ C
∫
|y|>|x|/2

dy

|x− y||y||y|β
≤ C

|x|

∫
R3

dy

|x− y||y|β
≤ C

|x|β−1
. (50)

Thereafter, in order to estimate the term I2,2, we use again the previous arguments to write

I2,2 ≤
C

|x|2

∫
|y|>|x|/2

|gi(y)|dy ≤ C

|x|2
‖gi‖L1 . (51)

With the estimates (49), (50) and (51) at hand, we finally obtain the wished identity (48).

Now, we need to verify that

1

−∆
(div(ϕ~u⊗ ~u))(x) = o

(
1

|x|

)
, |x| → +∞. (52)
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Since |ϕ(x)| ≤ C
1+|x|2 one can follow the same estimates in the proof of [2, Theorem 3.1, equation (2.3)] to

obtain the asymptotic profile

1

−∆
(div(ϕ~u⊗ ~u))(x) = m2(x)

(∫
R3

ϕ(y)~u⊗ ~u(y)dy

)
+ O

(
log(|x|)
|x|3

)
, |x| → +∞,

where m2 denotes the tensor of the operator div(·)
−∆ ; and it verifies the estimate |m2(x)| ≤ C

|x|2 outside the

origin. Hence we have the identity (52).

Finally, recall that the condition (5) yields
1

−∆
(~f) ∈ S(R3). With this information and by the identities

(48) and (52) we obtain the wished asymptotic profile (46). Proposition 4.2 is proven. �

Step 3. Estimate from below. In out last step, the asymptotic profile (46) will allow us to obtain
the next estimate from below on the velocity ~u, which yields ~u /∈ Lp(R3) for 1 ≤ p ≤ 3.

Proposition 4.3 Within the framework of Proposition 4.1, assume that

~f = κ~f, g = κg and ~g = κ~g, (53)

with ~f, g,~g ∈ S(R3) verifying (5); and with κ > 0 a suitable quantity defined in the expression (58) below.
Moreover, for the external force g and gravitational acceleration ~g = (g1, g2, g3), assume that∫

R3

1

−∆
(g)(x)gi(x)dx 6= 0, i = 1, 2, 3. (54)

Then there exists two quantities M1 = M1(θ, ~g) > 0 and M2 = M(θ, ~g) > 0, which depend on θ and g, such
that the velocity ~u verifies the estimate from below:

M1

2|x|
≤ |~u(x)|, M2 < |x|. (55)

Then, ~u /∈ Lp(R3) for 1 ≤ p ≤ 3.

Proof. From the asymptotic profile (46), for |x| > 0 large enough we can write

|~u(x)| =
∣∣∣∣ 1

|x|

(∫
R3

θ(y)~g(y)dy

)
+ o

(
1

|x|

)∣∣∣∣ ≥ 1

|x|

∣∣∣∣∫
R3

θ(y)~g(y)dy

∣∣∣∣− ∣∣∣∣o( 1

|x|

)∣∣∣∣ . (56)

We thus set the quantity M1 =

∣∣∣∣∫
R3

θ(y)~g(y)dy

∣∣∣∣ and, in order to verify that M1 > 0, we have the following

technical lemma:

Lemma 4.1 The assumptions (53) and (54) imply that M1 > 0.

Proof. Recall that the temperature θ verifies the fixed point equation

θ =
1

−∆
(g)− 1

−∆
(div(θ~u)),

where we denote
1

−∆
(g) = θ0 and

1

−∆
(div(θ~u)) = B2(θ, ~u). Moreover, since g = κg we shall denote

θ0 = κθ̃0 = κ
1

−∆
(g). Then, by the identities (53), for i = 1, 2, 3 we write∣∣∣∣∫
R3

θgidy

∣∣∣∣ =

∣∣∣∣∫
R3

(
θgi − θ0gi + θ0gi

)
dy

∣∣∣∣ ≥ ∣∣∣∣∫
R3

θ0gidy

∣∣∣∣− ∣∣∣∣∫
R3

(θ − θ0)gidy

∣∣∣∣
≥κ2

∣∣∣∣∫
R3

θ̃0gidy

∣∣∣∣− κ ∣∣∣∣∫
R3

(θ − θ0)gidy

∣∣∣∣ . (57)
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We must estimate the last term on the right-hand side. To do this, we recall that θ− θ0 = B2(θ, ~u); and by
the Hölder inequalities we write∣∣∣∣∫

R3

(θ − θ0)gidy

∣∣∣∣ ≤ ‖θ − θ0‖L4‖~g‖L4/3 ≤ ‖B2(θ, ~u)‖L4‖~g‖L4/3 .

Here, we still need to estimate the term ‖B2(θ, ~u)‖L4 . By the estimate (26) (with κδ2 instead of δ; and
where δ2 is given in (37) with the functions ~f and g) we have

‖B2(θ, ~u)‖L4 ≤ 3κδ2C1(4)‖m2‖L3/2,∞‖θ‖L4 = Cκ‖θ‖L4 .

Finally, we must estimate the term ‖θ‖L4 . We use the uniform control (33), where we recall that u0 is

defined in (16); and for u0 =
(

(−∆)−1~f, (−∆)−1g
)

we have u0 = κu0. Moreover, for the sake of simplicity

we shall denote C ′ =
(∑+∞

k=0
1
2k

)
. We thus have ‖θ‖L4 ≤ C ′‖u0‖L4 = C ′κ‖u0‖L4 . From these estimates we

finally obtain ∣∣∣∣∫
R3

(θ − θ0)gidy

∣∣∣∣ ≤ CC ′κ2‖u0‖L4‖~g‖L4/3 .

We thus get back to the estimate (57) to write∣∣∣∣∫
R3

θgidy

∣∣∣∣ ≥ κ2

∣∣∣∣∫
R3

θ̃0gidy

∣∣∣∣− κ3CC ′‖u0‖L4‖~g‖L4/3 ,

hence we have

κ2

∣∣∣∣∫
R3

θ̃0gidy

∣∣∣∣− κ3CC ′‖u0‖L4‖~g‖L4/3 > 0,

as long as

κ <

∣∣∣∫R3 θ̃0gidy
∣∣∣

CC ′‖u0‖L4‖~g‖L4/3

and 0 <

∣∣∣∣∫
R3

θ̃0gidy

∣∣∣∣ , (58)

where this last inequality is ensured by the assumption (54). �

Once we have M1 > 0, there exists quantity M2 > 0 large enough such that for |x| > M2 we have∣∣∣∣o( 1

|x|

)∣∣∣∣ ≤ M1

2|x|
.

Then, we get back to the inequality (56) to obtain the wished estimate from below (55). Proposition 4.3 is
proven. �

As noticed, Proposition 1.1 is now proven by Propositions 4.1, 4.2 and 4.3. �

5 Proof of Theorem 1.2

For the sake of clearness, we shall divide the proof in three main steps.

Step 1. The parabolic system. Our starting point is the study the time-dependent Boussinesq
system. For the velocity ~v : [0,+∞)× R3 → R3 and the temperature ϑ : [0,+∞)× R3 → R, and moreover,
for the time-independent functions ~f, g, ~g, we consider:

∂t~v −∆~v + div(~v ⊗ ~v) + ~∇P = ϑ~g + ~f, div(~v) = 0,

∂tϑ−∆ϑ+ div(ϑ~v) = g,

~v(0, ·) = ~v0, ϑ(0, ·) = ϑ0,

(59)

where ~v0 : R3 → R3, ϑ0 : R3 → R are the initial data. For a time 0 < T < +∞, we denote C∗([0, T ], Lp,∞(R3))
the functional space of bounded and weak−∗ continuous functions from [0, T ] with values in the Lorentz
space Lp,∞(R3). We prove now the following:
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Proposition 5.1 Consider the initial value problem (59) where ~f, g verify (6) and ~g verifies (7). Let p > 3
and let ~v0 ∈ Lp,∞(R3), ϑ0 ∈ Lp,∞(R3) be the initial data. There exists a time T0 > 0, depending on ~v0, ϑ0,
~f, g and ~g; and there exists a unique solution (~v, ϑ) ∈ C∗([0, T0], Lp,∞(R3)) to the equation (59). Moreover
this solution verifies:

sup
0<t≤T0

t
3
2p ‖~v(t, ·)‖L∞ + sup

0<t≤T0
t

3
2p ‖ϑ(t, ·)‖L∞ < +∞. (60)

Proof. Mild solutions of the system (59) write down as the integral formulation:

~v(t, ·) = et∆~v0 +

∫ t

0
e(t−s)∆ P(~f)ds+

∫ t

0
e(t−s)∆P(div(~v ⊗ ~v))(s, ·)ds︸ ︷︷ ︸

B1(~v,~v)

+

∫ t

0
e(t−s)∆P(θ~g(s, ·))ds︸ ︷︷ ︸

L(θ)

,
(61)

and

ϑ(t, ·) = et∆ϑ0 +

∫ t

0
e(t−s)∆ gds+

∫ t

0
e(t−s)∆div(ϑ~v)(s, ·)ds︸ ︷︷ ︸

B2(ϑ,~v)

.
(62)

By the Picard’s fixed point argument, we will solve both problems (61) and (62) in the Banach space X ,
where

X =

{
f ∈ C∗([0, T ], Lp,∞(R3)) : sup

0<t≤T
t

3
2p ‖f(t, ·)‖L∞ < +∞

}
,

with the norm

‖f‖X = sup
0≤t≤T

‖f(t, ·)‖Lp,∞ + sup
0<t≤T

t
3
2p ‖f(t, ·)‖L∞ .

Let us mention that for f1, f2 ∈ X , for simplicity we shall write ‖(f1, f2)‖X = ‖f1‖X + ‖f2‖X .

We start by studying the terms involving the data in the equations (61) and (62).

Lemma 5.1 The next estimate holds:∥∥(et∆~v0, e
t∆ϑ0

)∥∥
X +

∥∥∥∥∫ t

0
e(t−s)∆

(
~f, g
)
ds

∥∥∥∥
X
≤ C‖(~v0, ϑ0)‖Lp,∞ + CT

∥∥∥(~f, g)∥∥∥
Lp,∞

. (63)

Proof. First, for the initial data (~v0, ϕ) ∈ Lp,∞(R3), by the second point of Lemma 2.1 we have the estimate
‖(et∆~v0, e

t∆ϑ0)‖Lp,∞ ≤ C2‖(~v0, ϑ0)‖Lp,∞ . We thus get (et∆~v0, e
t∆ϑ0) ∈ C∗([0, T ], Lp,∞(R3)). On the other

hand, by Lemma 2.4 we write sup
0<t≤T

t
3
2p
∥∥et∆~v0

∥∥
L∞
≤ C‖~v0‖Lp,∞ and sup

0<t≤T
t

3
2p
∥∥et∆ϑ0

∥∥
L∞
≤ C‖ϑ0‖Lp,∞ .

We thus have (et∆~v0, e
t∆ϑ0) ∈ X and the following estimate holds:∥∥(et∆~v0, e

t∆ϑ0

)∥∥
X ≤ C‖(~v0, ϑ0)‖Lp,∞ . (64)

Thereafter, recall that the external forces ~f, g are time-independent functions. Since we assume (6) by
the second point of Lemme 2.1 we can write:∥∥∥∥∫ t

0
e(t−s)∆

(
P(~f), g

)
ds

∥∥∥∥
Lp,∞

≤
∫ t

0

∥∥∥e(t−s)∆
(
P(~f), g

)∥∥∥
Lp,∞

ds ≤ C2

∥∥∥(P(~f), g
)∥∥∥

Lp,∞

(∫ t

0
ds

)
,

and we get

sup
0≤t≤T

∥∥∥∥∫ t

0
e(t−s)∆

(
P(~f), g

)
ds

∥∥∥∥
Lp,∞

≤ CT
∥∥∥(P(~f), g

)∥∥∥
Lp,∞

.
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On the other hand, to estimate the expression sup
0<t≤T

t
3
2p

∥∥∥∥∫ t

0
e(t−s)∆P(~f)ds

∥∥∥∥
L∞

we remark that by Lemma

2.4 we have ∥∥∥e(t−s)∆P(~f)
∥∥∥
L∞
≤ C(t− s)−

3
2p

∥∥∥P(~f)
∥∥∥
Lp,∞

,

and then we can write

t
3
2p

∥∥∥∥∫ t

0
e(t−s)∆P(~f)ds

∥∥∥∥
L∞
≤ t

3
2p

∫ t

0

∥∥∥e(t−s)∆P(~f)
∥∥∥
L∞

ds

≤C t
3
2p

∫ t

0
(t− s)−

3
2p

∥∥∥P(~f)
∥∥∥
Lp,∞

ds ≤ Ct
3
2p

∥∥∥P(~f)
∥∥∥
Lp,∞

(∫ t

0
(t− s)−

3
2p ds

)
≤ C t

∥∥∥P(~f)
∥∥∥
Lp,∞

.

We thus obtain

sup
0<t≤T

t
3
2p

∥∥∥∥∫ t

0
e(t−s)∆P(~f)ds

∥∥∥∥
L∞
≤ CT

∥∥∥P(~f)
∥∥∥
Lp,∞

.

The other term involving the external force g follows similar estimates and we have

sup
0<t≤T

t
3
2p

∥∥∥∥∫ t

0
e(t−s)∆gds

∥∥∥∥
L∞
≤ CT ‖g‖Lp,∞ .

By the estimates above we get∥∥∥∥∫ t

0
e(t−s)∆

(
P(~f), g

)
ds

∥∥∥∥
X
≤ CT

∥∥∥(P(~f), g
)∥∥∥

Lp,∞
. (65)

Thus, the wished estimate (63) follows from the estimates (64) and (65). �

We study now the bilinear terms in (61) and (62).

Lemma 5.2 The following estimates hold:

‖B1(~v,~v)‖X ≤ C T
1
2
− 3

2p ‖~v‖2X , ‖B2(ϑ,~v)‖X ≤ C T
1
2
− 3

2p ‖ϑ‖X ‖~v‖X , (66)

where 1
2 −

3
2p > 0 as long as p > 3.

Proof. First, the term B1(~u, ~u) in (61) is estimated as follows:

sup
0≤t≤T

‖B1(~v,~v)‖Lp,∞ ≤ C T
1
2
− 3

2p ‖~v‖2ET . (67)

Indeed, by the second point of Lemma 2.1, by the well-known estimate on the heat kernel: ‖~∇h(t−s)(·)‖L1 ≤
c

(t−s)1/2 , and moreover, by Lemma 2.4 we have

sup
0≤t≤T

‖B1(~v,~v)‖Lp,∞ ≤ C sup
0≤t≤T

∫ t

0

∥∥∥e(t−s)∆Pdiv(~v ⊗ ~v)(s, ·)
∥∥∥
Lp,∞

ds

≤ C sup
0≤t≤T

∫ t

0

1

(t− s)1/2
‖~v(s, ·)⊗ ~v(s, ·)‖Lp,∞ds

≤ C sup
0≤t≤T

∫ t

0

1

(t− s)
1
2 s

3
2p

(s
3
2p ‖~v(s, ·)‖L∞)‖~v(s, ·)‖Lp,∞ds

≤ C T
1
2
− 3

2p ‖~v‖2X .

Thereafter, we have also the estimate

sup
0<t≤T

t
3
2p ‖B1(~v,~v)‖L∞ ≤ C T

1
2
− 3

2p ‖~v‖2X . (68)
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Indeed, we write:

sup
0<t≤T

t
3
2p ‖B1(~v,~v)‖L∞ ≤ sup

0<t<T
t

3
2p

∫ t

0

∥∥∥e(t−s)∆Pdiv (~v ⊗ ~v) (s, ·)
∥∥∥
L∞

ds = (a).

Here, we recall that the operator e(t−s)∆P(div(·)) writes down as a tensor of convolution operators (in the

spatial variable) whose kernels Ki,j,k verify |Ki,j,k(t− s, x)| ≤ c

((t− s)1/2 + |x|)4
. See [17, Proposition 11.1].

Then, we have ‖Ki,j(t− s, ·)‖L1 ≤
c

(t− s)1/2
; and we can write:

(a) ≤ C sup
0<t≤T

t
3
2p

∫ t

0

1

(t− s)1/2
(‖~v(s, ·)⊗ ~v(s, ·)‖L∞) ds

≤ C sup
0<t≤T

t
3
2p

∫ t

0

ds

(t− s)1/2s
3
p

(
s

3
2p ‖~v(s, ·)‖L∞

)2
ds

≤ C

(
sup

0<t≤T
t

3
2p

∫ t

0

ds

(t− s)1/2s
3
p

)
‖~v‖2X .

≤ C T
1
2
− 3

2p ‖~v‖2X .

By the estimates (67) and (68) we obtain

‖B1(~v,~v)‖X ≤ c T
1
2
− 3

2p ‖~v‖2X . (69)

We estimate now the term B2(ϑ,~v). By following the same arguments in the prove of the estimate (67)

(where we use the information s
3
2p ‖~v(s, ·)‖L∞ < +∞ and ‖ϑ(s, ·)‖Lp,∞ < +∞ ) we have

sup
0≤t≤T

‖B2(ϑ,~v)‖Lp,∞ ≤ C T
1
2
− 3

2p ‖ϑ‖X ‖~v‖X . (70)

Moreover, by following similar ideas in the proof of the estimate (68) we can prove:

sup
0<t≤T

t
3
2p ‖B2(ϑ,~v)‖L∞ ≤ C T

1
2
− 3

2p ‖ϑ‖X ‖~v‖X . (71)

Indeed, we just write

sup
0<t≤T

t
3
2p ‖B2(ϑ,~v)‖L∞ ≤ C

(
sup

0<t≤T
t

3
2p

∫ t

0

ds

(t− s)1/2s
3
2p

+ 3
2p

)
‖ϑ‖X ‖~v‖X ≤ C T

1
2
− 3

2p ‖ϑ‖X ‖~v‖X .

By the estimates (70) and (71) we get

‖B2(ϑ,~v)‖X ≤ C T
1
2
− 3

2p ‖ϑ‖X ‖~v‖X . (72)

To finish the proof, we gather the estimates (69) and (72) to obtain the wished estimate (66). �

Finally, we must study the linear term L(ϑ) in the equation (61). Recall that by the assumption (7) we
have ~g ∈ L∞(R3).

Lemma 5.3 The following estimate holds:

‖L(ϑ)‖X ≤ C‖~g‖L∞T ‖ϑ‖X . (73)
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Proof. We start with the following estimate, where by the second point of Lemma 2.1 and the Hölder
inequalities we write

sup
0≤t≤T

∥∥∥∥∫ t

0
e(t−s)∆P(ϑ~g)(s, ·)ds

∥∥∥∥
Lp,∞

≤ sup
0≤t≤T

∫ t

0

∥∥∥e(t−s)∆P(ϑ~g)(s, ·)
∥∥∥
Lp,∞

ds

≤C sup
0≤t≤T

∫ t

0
‖ϑ~g(s, ·)‖Lp,∞ds ≤ C‖~g‖L∞T‖ϑ‖X .

Moreover, by the third point of Lemma 2.1 and by using again the Hölder inequalities, the next estimate
holds

sup
0<t≤T

t
3
2p

∥∥∥∥∫ t

0
e(t−s)∆P(θ~g)(s, ·)ds

∥∥∥∥
L∞
≤ C sup

0<t≤T
t

3
2p

∫ t

0
(t− s)−

3
2p ‖P(ϑ~g)(s, ·)‖Lp,∞ds

≤C

(
sup

0<t≤T
t

3
2p

∫ t

0
(t− s)−

3
2pds

)
‖ϑ~g‖X ≤ C‖~g‖L∞T‖ϑ‖X .

We thus obtain the wished estimate (73). �

With the Lemmas 5.1, 5.2 and 5.3 at our disposal, we set a time T0 > 0 small enough and Proposition
5.1 follows from standard arguments. �

Step 2. Global boundness of ~u and θ. Now, we get back to steady-state system (1). With the help
of Proposition 5.1, we are able to prove the following:

Proposition 5.2 Let (~u, P, θ) be a weak solution of the system (1) given in Definition 1.1. If ~u ∈ Lp,∞(R3)
and θ ∈ Lp,∞(R3) with p > 3, then we have ~u ∈ L∞(R3) and θ ∈ L∞(R3).

Proof. In the initial value problem (59), we set the initial data (~v0, ϑ0) = (~u, θ). Then, by Proposition 5.1
there exists a time 0 < T0 and there exists a unique arising solution (~v, ϑ) ∈ C∗([0, T0], Lp,∞(R3)) to the
equation (59).

On the other hand, we have the following key remark. Since ~u and θ are time-independent functions we
have ∂t~u = 0 and ∂tθ = 0. Thus, the couple (~u, θ) is also a solution of the initial value problem (59) with
the same initial data (~u, θ), and moreover we have (~u, θ) ∈ C∗([0, T0], Lp,∞(R3)).

Consequently, in the space C∗([0, T0], Lp,∞(R3)) we have two solutions of (59) with the same initial data:
on the one hand, the solution (~v, ϑ) given by Proposition 5.1 and, on the other hand, the (steady-sate)
solution (~u, θ). By uniqueness we have the identity (~v, ϑ) = (~u, θ) and by (60) we can write

sup
0<t≤T0

t
3
2p ‖~u‖L∞ + sup

0<t≤T0
t

3
2p ‖θ‖L∞ < +∞.

But, as the solution (~u, θ) does not depend on the time variable we have ~u ∈ L∞(R3) and θ ∈ L∞(R3).
Proposition 5.2 is now proven. �

Step 3. Estimates on high order derivatives in Lorentz spaces. The global boundness of ~u and
θ yields the following:

Proposition 5.3 For k ≥ 0 assume that ~f, g verify (6) and ~g verifies (7). Moreover, assume that ~u ∈
Lp,∞(R3) and θ ∈ Lp,∞(R3) with p > 3. Then we have ~u ∈ Wk+2,p(R3), θ ∈ Wk+2,p(R3) and P ∈
Wk+1,p(R3).

Proof. We will use the integral formulations (11) and (12) to prove that for all multi-indice |α| ≤ k+ 2 and
for all 1 ≤ σ < +∞ we have ∂α~u ∈ Lpσ,∞(R3) and ∂αθ ∈ Lpσ,∞(R3). We shall prove this fact by an iteration
process respect to the order of the multi-indices α, which we will denote as |α|. For the sake of clearness, in
the following couple of technical lemmas we separately prove each step in the iterative argument.
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Lemma 5.4 (The case initial case) Recall that by Proposition 5.2 we have ~u, θ ∈ L∞(R3). Then, for
|α| ≤ 2 and for all 1 ≤ σ < +∞ we have ∂α~u ∈ Lpσ,∞(R3) and ∂αθ ∈ Lqσ,∞(R3).

Proof. Due to the coupled structure of the equations (11)-(12), we must study first the equation (12) and
then we study the equation (11).

• Let |α| = 1. By the equation (12) we write

∂αθ = − ∂α

−∆
(div(θ~u)) +

∂α

−∆
(g). (74)

Then, remark that since θ ∈ Lp,∞(R3)∩L∞(R3) by the first point of Lemma 2.3 we have θ ∈ Lpσ,∞(R3)
for all 1 ≤ σ < ∞. Moreover, since ~u ∈ L∞(R3) we have θ~u ∈ Lpσ,∞(R3). With this information, for

the first term on the right-hand side, remark that since |α| = 1 the operator − ∂α

−∆
(div(·)) writes down

as a combination of the Riesz Transforms RiRj (with i, j = 1, 2, 3). Thus, as we have θ~u ∈ Lpσ,∞(R3),

by Lemma 2.5 we obtain − ∂α

−∆
(div(θ~u)) ∈ Lpσ,∞(R3).

On the other hand, for the second term on the right-hand side, recall that the operator
∂α

−∆
(·) writes

down as a product of convolution with the tensor m2 ∈ L3/2,∞(R3). Moreover, recall that by the

assumption (6) we have g ∈ L
3p
3+p

,∞
(R3). We thus apply the first point of Lemma 2.1 (with 1 + 1/p =

2/3 + (3 + p)/3p) to obtain
∂α

−∆
(g) ∈ Lp,∞(R3). Thereafter, also by (6) and by the second point

of Lemma 2.3 we have g ∈ L3,1(R3) (remark that 3p
3+p < 3) and by the third point of Lemma 2.1

we get
∂α

−∆
(g) ∈ L∞(R3). Finally, by the first point of Lemma 2.3 we have

∂α

−∆
(g) ∈ Lpσ,∞(R3).

Consequently, we get ∂αθ ∈ Lpσ,∞(R3) for all 1 ≤ σ < +∞.

With this information, we can study now the equation (11). As before, we write

∂α~u = − ∂α

−∆
(P(div(~u⊗ ~u))) +

∂α

−∆

(
P (θ~g)

)
+

∂α

−∆

(
P(~f)

)
, (75)

and we shall prove that each term on right-hand side belongs to the space Lpσ,∞(R3) for all 1 ≤ σ <
+∞. Indeed, for the first term we recall that since ~u ∈ Lp,∞(R3) ∩ L∞(R3) by Lemma 2.3 we have
~u ∈ Lpσ,∞(R3); and consequently ~u⊗~u ∈ Lpσ,∞(R3). Then, we follow the same ideas above to conclude

that − ∂α

−∆
(P(div(~u⊗ ~u))) ∈ Lpσ,∞(R3).

For the second term, recall that the operator
∂α

−∆
P(·) writes down as a product of convolution with

the tensor m1 ∈ L3/2,∞(R3). Then, by the first point of Lemma 2.1 we write
∥∥∥ ∂α−∆P(θ~g)

∥∥∥
Lp,∞

≤
C1‖m1‖L3/2,∞‖θ~g‖

L
3p
3+p ,∞

. Then, by the assumption (7) and the second point of Lemma 2.2 we get

‖m1‖L3/2,∞‖θ~g‖
L

3p
3+p ,∞

≤ C‖θ‖Lp,∞‖~g‖L3,∞ . We thus get
∂α

−∆
P(θ~g) ∈ Lp,∞(R3). On the other hand,

by the third point of Lemma 2.1 we can write ‖ ∂α−∆P(θ~g)‖L∞ ≤ C3‖m1‖L3/2,∞‖θ~g‖L3,1 ≤ ‖θ‖L∞‖~g‖L3,1 .

We thus get
∂α

−∆
P(θ~g) ∈ L∞(R3); and consequently we have

∂α

−∆
P(θ~g) ∈ Lpσ,∞(R3).

The first term is similarly estimated as the term
∂α

−∆
(g) and we have

∂α

−∆

(
P(~f)

)
∈ Lpσ,∞(R3). We

thus obtain ∂α~u ∈ Lpσ,∞(R3) for all 1 ≤ σ < +∞.
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• Let |α| = 2. We get back to the expression ∂αθ defined in (74). For the first term on right-hand side
we write

− ∂α

−∆
(div(θ~u)) = − ∂

α1

−∆
(div(∂α2(θ~u))), where α = α1 + α2, |α1| = |α2| = 1.

Here, we shall verify that ∂α2(θ~u) ∈ Lpσ,∞(R3). Indeed, for i = 1, 2, 3 we write ∂α2(θui) = (∂α2θ)ui +
θ(∂α2ui) and since we get ∂α2θ, ∂α2~u ∈ Lpσ,∈, ~u, θ ∈ L∞(R3) we directly obtain ∂α2(θ~u) ∈ Lpσ,∞(R3).

Thereafter, recall that the operator − ∂
α1

−∆
(div(·)) writes down as a combination of the Riesz trans-

formsRiRj and by applying the Lemma 2.5 we have − ∂α

−∆
(div(θ~u)) ∈ Lpσ,∞(R3). The second term on

the right-hand side of the expression (74) also belongs to the space Lpσ,∞(R3) due to the hypothesis (6).

We study now the expression ∂α~u defined in (75). The first term on the right-hand side follows the same

arguments above and we have − ∂α

−∆
(P(div(~u⊗ ~u))) ∈ Lpσ,∞(R3). To study the second term on the

right-hand side, we also remark that in this case the operator
∂α

−∆
(P(·)) writes down as a linear com-

bination of the Riesz transforms, and moreover, since ~g ∈ L∞(R3) we have
∂α

−∆
(P(θ~g)) ∈ Lpσ,∞(R3).

Finally, always by the hypothesis (6) we have
∂α

−∆

(
P(~f)

)
∈ Lpσ,∞(R3). �

Lemma 5.5 (The iterative process) For all 1 ≤ m ≤ k (with k ≥ 2) and for all multi-indice |α| ≤ k,
assume that ∂α~u ∈ Lpσ,∞(R3) and ∂αθ ∈ Lpσ,∞(R3), for all 1 ≤ σ < +∞. Then it holds true for all
multi-indice |α| ≤ k + 2.

Proof. We shall similar ideas in the proof of the previous lemma.

• Let |α| = k + 1. We start by studying the expression ∂αθ defined in (74). For the first term on the
right-hand side we write

− ∂α

−∆
(div(θ~u)) = − ∂

α1

−∆
(div(∂α2(θ~u))), α = α1 + α2, |α1| = 1, |α2| = k.

In this last expression, we must verify that ∂α2(θ~u) ∈ Lpσ,∞(R3). Indeed, for i = 1, 2, 3 by the Leibniz

rule we write ∂α2(θui) =
∑
|β|≤k

cα2,β∂
βθ ∂α2−βui, where the constant cα2,β > 0 depends on the multi-

indices α2 and β. Recall that by hypothesis we have ∂βθ, ∂α2−βui ∈ Lpσ,∞(R3) and by the Hölder
inequalities we get ∂βθ ∂α2−βui ∈ Lpσ,∞(R3). We thus have ∂α2(θ~u) ∈ Lpσ,∞(R3) and consequently

− ∂α

−∆
(div(θ~u)) ∈ Lpσ,∞(R3). For the second term on the right-hand side, we write

∂α

−∆
(g) =

∂α1

−∆
(∂α2g), where α = α1 + α2, |α1| = 2, |α2| = k − 1,

and by the assumption (6) we get
∂α

−∆
(g) ∈ Lpσ,∞(R3).

Once we have ∂αθ ∈ Lpσ,∞(R3) for all |α| ≤ k + 1, by the expression (75) and by following the same
arguments above we obtain ∂α~u ∈ Lpσ,∞(R3) for all |α| ≤ k + 1. We just mention that to treat the

term
∂α

−∆

(
P (θ~g)

)
we split

∂α

−∆

(
P (θ~g)

)
=

∂α1
−∆

(
P (∂α2(θ~g))

)
, |α1| = 2, |α2| = k − 1,

where we use again the Leibniz rule to study the term ∂α2(θ~g).
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• Let |α| = k + 2. With the information ∂αθ ∈ Lpσ,∞(R3) and ∂α~u ∈ Lpσ,∞(R3) (for all |α| ≤ k + 1) at
our disposal, we just repeat again the arguments above to get ∂αθ ∈ Lpσ,∞(R3) and ∂α~u ∈ Lpσ,∞(R3)
for |α| = k + 2. �

Remark 6 By the hypothesis (6) on the external forces ~f and g, and moreover, by the terms ∂α

−∆P(~f) and
∂α

−∆(g) in the expressions (75) and (74) respectively, we get that k + 2 is the maximum gain of regularity
expected for ∂α~u and ∂αθ.

It remains to study the pressure term P in the first equation of the coupled system (1). To do this, we
apply the divergence operator to this equations to obtain that P is related to the velocity ~u, the temperature
θ and the force ~f through the expression

P =
1

−∆
div(div(~u⊗ ~u))− 1

−∆
(div(θ~g))− 1

−∆
(div(~f)). (76)

By following the same arguments in the proof the previous lemmas, we can prove the next one:

Lemma 5.6 (The pressure term) For all multi-indice |α| ≤ k + 1 we have ∂αP ∈ Lpσ,∞(R3).

Proof. Let |α| ≤ k + 1. By the expression (76) we write

∂αP =
∂α

−∆
div(div(~u⊗ ~u))− ∂α

−∆
(div(θ~g))− ∂α

−∆
(div(~f)), (77)

where we must study each term on the right-hand side. For the first term, we recall that ∂α~u ∈ Lpσ,∞(R3)
for all 1 ≤ σ < +∞. Then, we can use the Hölder inequalities as well as the Leibniz rule to obtain
∂α

−∆
div(div(~u⊗ ~u)) =

1

−∆
div(div(∂α(~u⊗ ~u))) ∈ Lpσ,∞(R3). The second term is similarly treated by using

now the information ∂αθ ∈ Lpσ,∞(R3) and the assumption (7). Finally, always by the hypothesis (6) the

third term verifies
∂α

−∆
(div(div(F))) ∈ Lpσ,∞(R3). �

Now, we are able to finish the proof of Theorem 1.1. For this we recall the Lorentz space Lp,∞(R3)
embeds in the Morrey space Ṁ1,p(R3) defined by the expression (9). Consequently, for all multi-indice
|α| ≤ k + 1, by Lemma 2.6 the functions ∂α~u and ∂αθ are Hölder continuous with parameter s = 1 − 3/p.
Moreover, for |α| ≤ k this fact also holds true for the function ∂αP . Theorem 1.2 is now proven. �

6 Proof of Theorem 1.3

This result is based on the following Caccioppoli-type estimate for the temperature θ. For R > 0 we shall
denote BR = {x ∈ R3 : |x| < R} and C(R/2, R) = {x ∈ R3 : R/2 < |x| < R}.

Proposition 6.1 Let (~u, P, θ) ∈ C2
loc(R3) × C1

loc(R3) × C2
loc(R3) be a smooth solution of the coupled system

(8). Let p > 3. There exists a constant C > 0 such that for all R ≥ 1 the following estimate hold:

∫
BR/2

|~∇θ|2dx ≤ C

(∫
C(R/2,R)

|θ|pdx

)2/p
R1− 6

p +R
2− 9

p

(∫
C(R/2,R)

|~u|pdx

)1/p
 . (78)

Proof. To prove the estimate (78), we introduce the following cut-off function: let ϕ ∈ C∞0 (R3) be a positive
and radial function verifying ϕ(x) = 1 when |x| < 1/2 and ϕ(x) = 0 when |x| ≥ 1. Then, for R ≥ 1 we define
ϕR(x) = ϕ(x/R). Consequently, the cut-off function ϕR satisfies the next useful properties: ϕR(x) = 1 when
|x| < R/2, ϕ2(x) = 0 when |x| ≥ R, and moreover, for all multi-indice α we have supp(∂αϕR) ⊂ C(R/2, R).
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Now, we multiply each term in the second equation in (8) by ϕRθ; and we integrate on the ball BR
(remark that supp(ϕRθ) ⊂ BR) to get∫

BR

(−∆θ)ϕRθdx+

∫
BR

div(θ~u)ϕRθdx = 0. (79)

Here it is worth highlighting each term above is well-defined since we have ~u, θ ∈ C2
loc(R3). To study the

first term we integrate by parts to write

∫
BR

(−∆θ)ϕRθdx = −
3∑
i=1

∫
BR

(∂2
j θ)(ϕRθ)dx =

3∑
i,j=1

∫
BR

∂iθ∂i(ϕRθ)dx

=
3∑
i=1

∫
BR

(∂iθ)(∂iϕR)θdx+
3∑
i=1

∫
BR

(∂iθ)ϕR(∂iθ)dx =
3∑
i=1

∫
BR

(∂iϕR)(∂iθ)θdx+
3∑
i=1

∫
BR

ϕR(∂iθ)
2dx

=

3∑
i=1

∫
BR

(∂iϕR)∂i

(
θ2

2

)
dx+

∫
BR

ϕR|~∇θ|2dx = −
∫
BR

∆ϕR

(
θ2

2

)
dx+

∫
BR

ϕR|~∇θ|2dx.

(80)

Thereafter, to study the second term, we remark first that since div(~u) = 0 we have div(θ~u) = ~u · ~∇θ. Then,
we use again the integration by parts to get

∫
BR

~u · ~∇θ · (ϕRθ)dx =

3∑
i=1

∫
BR

ui(∂iθ)(ϕRθ)dx =

3∑
i=1

∫
BR

ϕRui(∂iθ)θdx =

3∑
i=1

∫
BR

ϕRui ∂i

(
θ2

2

)
dx,

but, always by the fact that div(~u) = 0, we can write

3∑
i=1

∫
BR

ϕRui ∂i

(
θ2

2

)
dx =

3∑
i=1

∫
BR

ϕR∂i

(
ui
θ2

2

)
dx = −

∫
BR

~∇ϕR ·
(
θ2

2
~u

)
dx. (81)

With the identities (80) and (81) at our disposal, we get back to the identity (79) and we obtain∫
BR

ϕR|~∇θ|2dx =

∫
BR

∆ϕR

(
θ2

2

)
dx+

∫
BR

~∇ϕR ·
(
θ2

2
~u

)
dx.

Moreover, since ϕR(x) = 1 in the ball BR/2, supp(~∇ϕR) ⊂ C(R/2, R) and supp(∆ϕR) ⊂ C(R/2, R); we
have ∫

BR/2

|~∇θ|2dx ≤
∫
C(R/2,R)

∆ϕR

(
θ2

2

)
dx+

∫
C(R/2,R)

~∇ϕR ·
(
θ2

2
~u

)
dx. (82)

In this estimate, we shall study each term on the right-hand side. For the first term, we use the Hölder
inequalities with 1

q + 2
p = 1 (hence we have 3

q − 2 = 1− 6
p) and the fact that ϕR(x) = ϕ(x/R) to write

∫
C(R/2,R)

∆ϕR

(
θ2

2

)
dx ≤C

(∫
C(R/2,R)

|∆ϕR|qdx

)1/q (∫
C(R/2,R)

|θ|pdx

)2/p

≤C R
3
q
−2‖∆ϕ‖Lq(C(1/2,1))

(∫
C(R/2,R)

|θ|pdx

)2/p

≤C R1− 6
p

(∫
C(R/2,R)

|θ|pdx

)2/p

.

(83)
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For the second term, we use again the Hölder inequalities with 1
r + 3

p = 1 (hence we have 3
r − 1 = 2 − 9

p)

and with 3
p = 2

p + 1
p to write

∫
C(R/2,R)

~∇ϕR ·
(
θ2

2
~u

)
dx ≤C

(∫
C(R/2,R)

|~∇ϕR|rdx

)1/r (∫
C(R/2,R)

|θ2 ~u|p/3dx

)3/p

≤C R
3
r
−1‖~∇ϕ‖Lr(C(1/2,1))

(∫
C(R/2,R)

|θ|pdx

)2/p (∫
C(R/2,R)

|~u|pdx

)1/p

≤C R2− 9
p

(∫
C(R/2,R)

|θ|pdx

)2/p (∫
C(R/2,R)

|~u|pdx

)1/p

.

(84)

Thus, the wished estimate (78) follows from the estimates (82), (83) and (84). Proposition 6.1 is proven. �

With the Proposition 6.1 at our disposal, we are able to proof the Theorem 1.3. The main idea is to use
this Caccioppoli-type estimate, together with the information below on ~u and θ, to prove first that θ = 0.
This identity then yields ~u = 0 and P = 0.

6.1 The case ~u ∈ L 9
2
,q(R3), θ ∈ L 9

2
,q(R3) with 1 ≤ q < +∞ and ~g ∈ W1,9/2 ∩W 1,∞(R3).

With this information on ~u, θ and ~g, by Theorem 1.2 we have (~u, P, θ) ∈ C2(R3)× C1(R3)× C2(R3). Then,
we set p = 9

2 and by Proposition 6.1 for all R ≥ 1 we have the estimate

∫
BR/2

|~∇θ|2dx ≤ c

(∫
C(R/2,R)

|θ|
9
2dx

) 4
9

R− 1
3 +

(∫
C(R/2,R)

|~u|
9
2dx

) 2
9

 . (85)

At this point, we recall the following estimate (see [7, Proposition 1.110] for a proof):∫
BR

|f |
9
2dx ≤ cR3(1−9/2q)‖f‖

9
2

L9/2,∞ ≤ cR3(1−9/2q)‖f‖
9
2

L9/2,q . (86)

We thus set f = 1C(R/2,R)θ and f = 1C(R/2,R)~u; and we get back to the previous estimate to write∫
BR/2

|~∇θ|2dx ≤ c‖1C(R/2,R)θ‖2L9/2,q [1 + ‖~u‖L9/2,q ] . (87)

Thereafter, since θ ∈ L9/2,q(R3) with 1 ≤ q < +∞ we can apply the dominated convergence theorem in the
Lorentz spaces (see [7, Theorem 1.2.8]) to obtain that lim

R→+∞
‖1C(R/2,R)θ‖2L9/2,q = 0. Consequently, in the

last estimate we take the limit when R → +∞ to conclude that ‖~∇θ‖L2 = 0. From this identity and the
fact that θ ∈ L9/2,q(R3) we finally get the identity θ = 0.

Once we have θ = 0, the coupled system (59) reduces to the stationary Navier-Stokes equation

−∆~u+ div(~u⊗ ~u) + ~∇P = 0, div(~u) = 0. (88)

Since ~u ∈ L9/2,q(R3) (with 9/2 < q < +∞) is a smooth solution by [13, Theorem 1] we obtain the identities
~u = 0 and P = 0.

6.2 The case ~u ∈ Lp,∞(R3), θ ∈ Lp,∞(R3) and ~g ∈ W1,p ∩W 1,∞(R3) with 3 < p < 9
2
.

With this information on ~u and θ; and by Proposition 5.2 we have ~u, θ ∈ L∞(R3). Then, by Lemma 2.3 and
by the well-known embedding of the Lebesgue spaces into the Lorentz spaces we obtain ~u, θ ∈ L9/2,q(R3) with
9/2 < q < +∞. Thereafter, by the point 6.1 above we con directly conclude the identities (~u, P, θ) = (0, 0, 0).

Theorem 1.3 is proven. �
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[3] J. Boussinesq. Théorie analytique de la chaleur: mise en harmonie avec la thermodynamique et avec la
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