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Abstract

We introduce a fairly general dispersive-dissipative nonlinear equation, which is characterized by frac-
tional Laplacian operators in both the dispersive and dissipative terms. This equation contains as partic-
ular cases some physically relevant models of the fluid dynamics, among them, the dispersive Kuramoto-
Velarde equation, the Kuramoto-Sivashinsky equation and some nonlocal perturbations of the KdV and
the Benjamin-Ono equations. We acutely study the effects of the fractional Laplacian operators in the
qualitative study of solutions: on the one hand, we prove a sharp well-posedness result in the framework
of the Sobolev spaces of negative order. On the other hand, we study pointwise decaying properties of
solutions in the spatial variable, which are optimal in some cases. These last results are of particular
interest for the contained physical models. Precisely, they agree with previous numerical works on the
spatially decaying of a particular kind of solutions so-called the solitary waves.
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1 Introduction and motivation of the model

In the context of physical phenomena, the dispersive Kuramoto-Velarde equation
(KV) O+ 0%u + 03u + Otu + 72 02 (u?) + 3 (Opu)? = 0,

describes slow space-time variations of disturbances at interfaces, diffusion-reaction fronts and plasma in-
stability fronts [5, 11, 12]. It also describes Benard—Marangoni cells that occur when there is large sur-
face tension on the interface [14, 26, 27] in a microgravity environment. This situation arises in crystal
growth experiments aboard an orbiting space station, although the free interface is metastable with re-
spect to small perturbations. In particular, the nonlinearities, v3 (0;u)? and o 8%(u?), model pressure
destabilization effects striving to rupture the interface. Likewise, the equation (KV) is a variation of the
Kuramoto—Sivashinsky equation,

(KS) O+ 0%u + O3u + Ou + 3 (Opu)? = 0,

which describes slow space-time variations of disturbances at interfaces, flame fronts, diffusion-reaction
fronts, plasma instability fronts and the long waves on the interface between two viscous fluids [13]. In this
equation, the linear terms describe a balance between long-wave instability and short-wave stability, while
with the nonlinear term provides a mechanism for energy transfer between wave modes. Finally, remark
that the (KS) equation agrees with the (KV) equation at 2 = 0.

Taking the periodic case into account, the equation (KS) is one of the simplest partial differential equa-
tions which is capable of exhibiting chaotic behavior. The long time behavior of the KS equation is char-
acterized by the negative (therefore destabilizing) second-order diffusion, the positive (therefore stabilizing)
fourth-order dissipation, and the nonlinear coupling term [21].

On the other hand, thinking about models describing the behavior of other types of fluids such as
stratified fluids, relevant equations with nonlocal terms appear. A case of this type of equations is, on the
one hand, the Ostrovsky, Stepanyams and Tsimring (OST) equation:

(OST)  Opu+ 3u+ udyu + nH(pu + d3u) = 0,

which is a nonlocal perturbation of the celebrated Korteweg-de Vries (KdV) equation and, on the other
hand, a nonlocal perturbed version of the well-known Benjamin-Ono equation [4]:

(npBO)  dyu + HO?u + udyu + nH(dpu + 82u) = 0.

where H is the Hilbert transform (see (2) for a precise definition) and n > 0 is a physical parameter.

The OST equation describes the radiational instability of long non-linear waves in a stratified flow
caused by internal wave radiation from a shear layer. The parameter n > 0 represents the importance of
amplification and damping relative to dispersion. The fourth term in equation represents amplification,
while the fifth term in equation denotes damping. For a more complete physical description we refer to
[18, 19, 20], while the nonlocal perturbed Benjamin-Ono is a good approximate model for long-crested
unidirectional waves at the interface of a two-layer system of incompressible inviscid fluids. Moreover, it
gives an analogous model of the OST equation in deep stratified fluids [4].

One of the main objectives of this article is to introduce a new general theoretical equation that encom-
passes the aforementioned equations as well as some other physically relevant variants. We also want to
understand or at least shed some light on the interaction between the dispersive term and the dissipative
term that our equation presents, in relation to the mathematical questions on local and global well-posedness;
and persistence properties of spatially decaying. This latter is of great interest for the particular physics
models contained in our equation. Precisely, when compared with previous numerical studies on the spatially
decaying of their solitary waves.



For the parameters @ > 8 > 0 and 1, 72,73 € R, we shall consider the following dispersive-dissipative,
nonlocal and nonlinear equation:

{atu + D(0,u) + (Dg‘ - Df)u + 71 0 (u?) + 72 02(u?) + 73 (0zu)? =0, (t,z) € (0,+00) X R, (1)

u(0, ) = up.

Here, the function u : [0,+00) x R — R denotes the solution and the function uy : R — R is the initial
datum.

The dispersive effects are characterized by the term D(d,u), where the operator D is given by D = 9?2 or
by D = HJ,. In this last expression H denotes the Hilbert transform, which is a nonlocal operator defined
in the Fourier variable as

H(ep) = —ising(€) B(4), (2)

where sing () is the sing function and ¢ € S(R). Therefore, in the Fourier variable we have

—[€]?, when D = 92,

3
€|, when D = HO,. )

Dp(€) = m(€)P(€), where m(€) = {

The whole term D(09,u) describes the linearized dispersion relation in the equation (1).

The dissipative action of the equation is given by the term D — Df . These two fractional derivative
operators are easily defined in the Fourier variable by the expressions

Dap(€) = caldl* (). Dig(E) = eslél? 3(6). (4)

Thus, the total dissipative action of the equation (1), in terms of Fourier variable, is essentially given is
given by the symbol |£|* — |¢[5.

From a purely physical perspective, this model is not unreal since physical phenomena that are purely
dissipative or purely dispersive are rarely found. This same fact makes interesting to study equation (1)
from a mathematical point of view.

Finally, the nonlinear part of equation (1) is described by the term 71 d,(u?), which represents the
classical transport term in fluid models, and by the terms v 82 (u?), v3 (9u)?, taken from the (KV) model
introduced above. In particular, these last terms allow the model to have a greater mathematical richness,
on the one hand, a blow-up criterion in the well-posedness theory (see the Proposition 1 below) and, on the
other hand, some optimal spatial decaying rates of solutions (see the Corollary 1 below).

One of the main interest of the equation (1) is based on the fact that it contains the following physi-
cally relevant models as a particular case. This is not an exhaustive list, but we shall mention the most
representative ones. We shall divide them into two main groups according to dispersive effects of the term

D(dy).

Nonlocal dispersive effects. We consider here D = H3,, and then D(d,) = HO2. The nonlocal effects
of this term are given by the Hilbert transform H (defined in (2)) and in this group we have the following
models.

e By setting @« = 3, § = 1 and 72 = 73 = 0, the equation (1) agrees with the nonlocal perturbed
Benjamin-Ono equation:

Ou + HO2u + %(agu + Qvu) + 9, (u?) = 0. (5)

This equation is a good approximated model for long-crested unidirectional waves at the interface of
a two-layer system of deep stratified incompressible inviscid fluids [4].



e When a =4, f =1 and 73 = 73 = 0, the equation (1) writes down as another relevant physical model:
dyu + HO2u + O2u + Hopu + 0, (u?) = 0. (6)
This equation provides a successful model in plasma theory [25].

e More generally, for &« > 8 > 0, and 2 = 73 = 0, the equation (1) becomes the following modified
Benjamin-Ono equation:

B + HOPu + <D§“ ng)qu@x(uQ) —0. (7)

This equation was introduced in [22] as a theoretical model to sharply study the well-posedness issues,
which are driven by the parameters . and 5.

Local dispersive effects. In this case, we consider D = 9?2 (the classical Laplacian operator) and we
obtain D(d,) = 02. Among the models containing this dispersive term, it is worth mentioning the following
ones.

e For o > 3 > 0 and 2 = 3 = 0, the equation (1) writes down as the following modified KdV equation:
O+ OPu + (Df; - Df)u+8x(u2) —0. 8)

To the best of our knowledge, this equation has not been studied before; and it is a KdV -counterpart
of the equation (7). Precisely, its main interest is the study of the dispersive effects of the term 93u,
when compared with the effects of the dispersive term HO?u in the equation (7).

e When a =3, =1 and 72 = 73 = 0 we have the OST equation:
Opu + Pu+H (Qz’u + 8xu> + 0 (u?) = 0, (9)

which describes the radiational instability of long non-linear waves in a stratified flow caused by internal
wave radiation from a shear layer [18, 19, 20].

e Finally, when « = 4, § = 2 and 7; = 0, the equation (1) becomes the dispersive Kuramoto-Velarde
equation:

Opu+ O2u + 2w+ Ogu + v2 02(u?) + 3 (Oyu)? = 0, (10)
and moreover, when we set 79 = 0 we obtain the 1D- Kuramoto-Sivashinsky equation:
dvu+ 0%u+ 2u+ dtu 4 3 (Opu)? = 0. (11)
The physics interest of both models was explained above.

As mentioned, the main objective of this paper is to focus on two relevant issues for equation (1): a well-
posedness theory in the setting of the Sobolev spaces and the persistence problem of the spatially decaying
of solutions. It is worth emphasizing these qualitative properties deeply depend on the parameters o, 8 in

the dissipative term (Dg‘ —Dj ) u, on the parameters 2,73 in the nonlinear term v202(u?) + v3(0,u)? as

well as on the operator D in the dispersive term D(0yu).



2 The main results

2.1 Well-posedness

We recall that the equation (1) is locally well-posed in the space H*(R) (with s € R) if for any initial datum
uo € H*(R) there exists a time 0 < T' = T'(||up]|| zr+) and there exists a unique solution u(¢, x) to the equation
(1) in a space Ep C C([0,T], H*(R)), such that the flow-map data-solution:

S HYR) — Er € C([0,T], H*(R)), ug s S(t)uo = ult,-), (12)

is a locally continuous function from H*(R) to Er.

As mentioned, the local well-posedness (LWP) of the equation (1) is driven by the parameter « in its
dissipative term. Precisely, the constraint o > 7/2 will allow us to handle the strong nonlinear effects of the
terms 7202 (u?) 4+ v3(0,u)? (see the Remark 1 below for more technical details on this fact) while in the case
~v2 = 3 = 0 this constraint is relaxed to o > 2. Thus, our first result states as follows:

Theorem 1 (LWP) Let o > 8 > 0 and let v1,72,73 be the parameters in the equation (1).

1. Let vo,v3 # 0. We set o > 7/2 and then the equation (1) is locally well-posed in the Sobolev space
H*(R) with s > 1—a/2. Moreover, we have u € C1(]0,T],C®(R)) and the flow-map function S defined
in (12) is smooth.

2. Let 79 = v3 = 0. We set a > 2 and then the equation is locally well-posed in H*(R) with s >
max(3/2 — a, —a/2). As above, we have u € C1(]0,T],C®(R)) and the flow-map function S is smooth.

It is important to emphasize that one of the main interest of this theorem lies in the understanding of
the relationship between the parameters «, 7, and 73 with the well-posedness theory for the equation (1).

This theorem also recovers some known results on the local well-posedness for the particular physi-
cal models introduced above, among them, the nonlocal perturbed Benjamin-Ono equation (5) studied in
[10], the plasma model (6) and the modified Benjamin-Ono equation (7) studied in [22], the OST equa-
tion (9) investigated in [28], the dispersive Kuramoto-Velarde equation (10) investigated in [23] and the
1D— Kuramoto-Sivashinsky (11) equation studied in [3].

Compared with these results, the novelty of this theorem is the fact that even for negative values of s, H*-
initial data yield classical solutions to the equation (1) since they also belong to the space C'(]0, T],C(R)).
In particular, for the equations (10) and (11) this theorem improves the result obtained in [7], where the
existence of classical solutions is proven for H?-initial data verifying some additional smallness conditions.

Finally, the second point above provides us a new locally well-posedness result for the modified KdV
equation (8), which (to our knowledge) has not been studied before.

On the other hand, we observe that the minimal regularity (measured by the parameter s) to prove the
local well-posedness in the space H*(R) also depends on the parameter « through the conditions s > 1—«/2
when 72,73 # 0 and s > min(3/2 — a, —«/2) when v2 = 3 = 0. In our second result, we prove that the
quantities 1 — /2 and —«a/2 are sharp in the local well-posedness theory in the following sense:

Theorem 2 (Sharp LWP)

1. Let a> >0 with o > 7/2 and 72,773 # 0. Let s <1 — «/2. If the equation (1) is locally well-posed
in H*(R) then the flow-map function S in not a C?>— function at ug = 0.

2. Let > >0 withaw>2 and v2 =3 = 0. Let s < —«a/2. If the equation (1) is locally well-posed in
H*(R) then the flow-map function S in not a C*— function at ug = 0.



Next, we are interested in studying the global well-posedness (GWP) of the equation (1). We recall
that this equation is globally well-posed in H*(R) if the properties mentioned above hold true for any time
0 < T. In our third result, we show that the GWP is driven by the parameters 45 and 73 in the nonlinear
term 7202(u?) + 73(,u)?.

Theorem 3 (GWP) Within the framework of Theorem 1, the equation (1) is globally well-posed in the
space H*(R) (with s > 1 —«a/2 or s > max(3/2 — o, —/2)) when —2v3 + 3 = 0.

In the particular case when v = 73 = 0, we recover the GWP for the set of models (5), (6), (7), (9) (see
the references mentioned above). Moreover, we give a new GWP result for the modified KdV equation (8).

Concerning the Kuramoto-Sivashinsky equation (11) (where v = 0) the constraint —2y5+~3 = 0 implies
that v3 = 0, and consequently, this result trivially holds true for the linear version of this equation. It is
worth emphasizing this fact is coherent with [24], where it is shown that the nonlinear term ~3(9,u)? yields
finite blow-up of solutions to the equation (11) associated with a large class of initial data.

Finally, for the dipersive Kuramoto-Velarde equation (10), we are able to ensure its GWP as long as
—2v2 + 73 = 0, which was pointed out in [23]. The GWP or blow-up phenom in the case —2v2 + 3 # 0
remains an open question far from obvious and, in future research, we aim to give a deeper understanding
of the effects of the nonlinear term 4202 (u?) + 73(d,u)? in the GWP theory. However, by performing some
new energy estimates we are able to prove the following:

Proposition 1 (Blow-up criterion) Within the framework of Theorem 1, assume that vyo and 73 are such
that —2v9 + v3 # 0. Then, for a time 0 < T™* < 400 we have:

T*
lim |Ju(t,-)||gs = +o0 if and only if / |0%u(t, -)|| oo dt = +o0.
t—T* 0

This result gives us a new blow-up criterion for the dispersive Kuramoto-Velarde equation (10) and its
related models containing the nonlinear term Y202 (u?) + v3(0,u)?.

2.2 Spatially decaying

In this section we study another relevant qualitative property of the equation (1): the pointwise decaying
of solutions wu(t,x) respect to the spatial variable xz. This question gives us a good comprehension of the
terms in this equation governing the spatially behavior of solutions; and it is also of physical interest when
particularizing in the models introduced above. Specifically, when comparing with the spatially behavior of
a relevant kind of particular solutions, the so-called solitary waves.

From the nonlinear differential equations point of view, the existence of the solitary wave describes a
perfect balance between the nonlinearity and the dispersive character of its linear part. We refer to the
book [17] for more details. Concerning the physics models introduced above, there exist previous numerical
works on the spatially decaying of solitary waves. These works give some light on the spatially decaying
of solutions to these equations. In this context, the main contribution of this work is to use the general
framework of the equation (1) to analytically study the spatially decaying of solutions, which simultaneously
holds true for the particular physics models contained in this equation.

As we shall observe, our main remark is that these decaying properties of solutions to the equation (1)
are driven by both the dispersive term D(d,u) and the dissipative term (D — DJ)u in the equation (1).
Precisely, by the operator D defined in (3) and the parameters « and 5. We introduce here the parameter



n > 2, which depends on D, « and (3, as follows:

min(3, 8] +1), when D = H0O,,
any natural number, when D = —03 and «, 3 are both even numbers,

" [a] +1, when D = —92, 3 is an even number and not «, (12)
[B] +1, when D = —0? and B is not an even number,

where [a] and [f] denote the integer part of o and f respectively. The parameter n gives us a detailed
description on the pointwise decaying rate of solutions to the equation (1); and our next result reads as
follows:

Theorem 4 (Spatially pointwise decaying) Let s > % and let ug € H*(R) be an initial datum. Let
a> > 1, with o > 7/2 when v2,v3 # 0 and a > 2 when 2 = 3 = 0. Moreover, let u € C([0,T], H*(R))
be the solution to the equation (1) associated to ug, given by Theorem 1.

Let k > 1 and assume that the initial datum ug verifies

Co

R

z € R, (14)

with a constant co > 0. Then the solution u(t,z) verifies the following pointwise estimate

’ < cl(ta U)
14+ ‘x’min(n,n)’

lu(t, x) 0<t<T, z€R, (15)

with a constant ci(t,u) > 0 depending on t, u and co > 0; and where the parameter n > 2 defined in (13).

Let us make the following comments. The assumption of the initial data ug € H*(R) with s > 5/2
ensures that the arising solution verifies u(t,-) € H*(R) for all ¢ > 0 (see Theorem 1). In particular, the
technical constraint s > 5/2 allows us to handle the nonlinear terms in the equation (1).

In the expressions (14) and (15), we may observe that the parameter n controls the decaying properties
of solutions: the solution wu(¢,x) fulfills the decaying given by the initial datum only if x < n. But, for
initial data decaying fast enough (x > n) the corresponding solution does not mimic this decaying rate and
it decays at infinity like 1/|x|".

From now on, we shall assume initial data decaying fast enough: x > n, and we shall discuss more in
detail the decaying estimate verified by the solution |u(¢,z)| < 1/|x|™. To do this, recall that the parameter
n ultimately depends on the operator D and the parameters «a, § according to the expression (13).

e When D = H0O, the nonlocal effects of this operator have a strong influence in the spatially decaying
properties of solutions. Precisely, in this case we have n = max(3, [5]+1), where the number 3 is due to
the presence of the Hilbert transform . See the Proposition 4.1 below for more details. Consequently,
the physical models containing the dispersive term H?u verify the estimate

1

-+
lu(t,z)| S ,x|max(3,[m+1)‘ o

In particular, solutions to the plasma model (6) and solutions to the nonlocal perturbed Benjamin-

Ono equation (5) (in both cases we have 5 = 1) have the spatially decaying |u(t, x) For this

INETE

|z|?
last equation, this information is coherent with [2], where the authors numerically prove that solitary
waves this equation behave at infinity as 1/]z|?. On the other hand, the spatially decaying properties
of solutions to the modified Benjamin-Ono equation (7) have not been studied before; and they satisfy
the spatially decaying (16). Here, we also realize the effects of the parameter /3 in the dissipative term,
while the parameter o does not intervene.



e When D = —9? it is interesting to observe that the local effects of this operator do not influence the
decaying properties of solutions, which are now driven by the parameters o and 3. Here, we have the
following cases.

— When « and § are both even numbers, one can set any parameter n € N (with n > 2); and for
initial data verifying (14) with k > N, solutions to the equation (1) verify the estimate

This persistence problem is verified for the dispersive Kuramoto-Velarde equation (10) and the
Kuramoto-Sivashinsky equation (11). Moreover, this fact is in concordance to some numerical
studies on the well-localized solitary waves to these equations. See for instance [5] and [6].

— When £ is a even number but not «, solutions to the equation (1) have a decaying rate

1
|33|[a}+1’

u(t, z)| <

while £ is not an even number it holds

1
< -

These decaying rates are verified by the modified KdV equation (8) according to these cases
of the parameters o and 5. Moreover, it is interesting to get back to the modified Benjamin-
Ono equation (7), which verifies the decaying rate (16), to highlight the stronger effects of the
dissipative term HO?u compared with the dissipative term —02u.

— Finally, for § = 1, solutions to the OST equation (9) verify the decaying rate

1
u(t,z)| < —5.

This spatially decaying agrees with numerical studies performed on solitary waves in [1]; and it
was also analytically proven in our previous work [8].

Now, we are interested in studying the optimality of the decaying rate (15) (with x > n). To do this,
first we shall find an asymptotic profile for the solution u(t, x) to the equation (1). In order to state our next
theorem, we need to introduce function K, 5(t,z) which is obtained as the solution of the linear problem
(when 71 = 72 = 73 = 0) of the equation (1):

{atKaﬁ + D(0, Ko ) + (D;’; - D§2’> Kap=0, ()€ (0,+00) xR, )

Ka,ﬁ(oa ) = 507

where 0y denotes the Dirac mass at the origin. It is thus interesting to observe that the asymptotic profile
of the solution u(t, x) to the equation (1) is essentially given by the function K, g(t,z). Precisely, we start
by studying the pointwise decaying (in the spatial variable) of this function.

Proposition 2 Let n > 2 be the parameter given in the expression (13). Moreover, let a > [ > 1, with
a > 2. Forallt > 0 fized, there exists a quantity I(t), which verifies |1(t)| < Cre™t with constants Cy,m1 > 0
depending on « and 3, such that the following identity holds:

i)

|

| Ko p(t, )| t>0, x#0. (18)

8



Then, our next theorem writes down as follows:

Theorem 5 (Asymptotic profile) Let ug € H*(R) (with s > ) be an initial datum verifying (14) with
Kk > n; and where the parameter n > 2 is defined in (13). Let u € C([0,T], H*(R)) (with s > 3) be the
associated solution to the equation (1) given by Theorem 1.

For 0 <t <T fixed, this solution has the following asymptotic development in spatial variable

uwm:mem(Am@mQ+mmwwm414@wﬂﬂw@)h+Mmm 2] = +o0, (19)

where
C2 (t’ u)
|CC‘”+5 ’

|R(t,z)| < 0<e<l, (20)

with a constant ca(t,u) > 0 depending on t and u.

From this asymptotic development we can deduce some optimally decaying properties of the solution
t
u(t,z). First, the expression 73 Kaﬁ(t,a:)/ (/ (Opu)*(T, y)dt) dr highlights interesting effects of the
0 \JR
nonlinear v3(d,u)? in the spatially decaying of solutions. Precisely, when 3 # 0 this expression yields

the following estimate from below:

Corollary 1 Within the framework of Theorem 5, assume that v3 # 0. Then the solution u(t,x) to the
equation (1) verifies:
c3(u07’737t7u)

o < ult, z)|, |z = +oo, (21)

where the quantity cs(ug, v3,t,u) > 0 (given in (106)) depends on ug,~ys,t and u but it is independent of the
variable x.

Consequently, the physical models containing the nonlinear term v3(9,u)? have an optimal decaying rate:

lu(t,x)| ~ |x| — +oo. (22)

[z’

In particular, this optimal decaying rate is verified by the dispersive Kuramoto-Velarde equation (10) and
the Kuramoto-Sivashinsky equation (11).

We study now the case when 3 = 0. Here, solutions to the equation (1) have the asymptotic profile:
ults2) = Koplt,2) ([ o)) + Bit.o), o] > o
R

where the optimality properties are now driven by the term / uo(y)dy.
R

Corollary 2 Within the framework of Theorem 5, assume that v3 = 0. In this case, we have the following
scenarios:

1. If the initial datum ug verifies / uo(y)dy # 0, then the solution u(t,x) to the equation (1) verifies the
R
estimate from below:

where the quantity c4(ug,t) > 0 (given in (107)) depends on ug and t but it is independent of x.



2. Otherwise, if the initial data verifies /uo(y)dy =0, then the solution u(t,z) to the equation (1)
R

verifies the estimate from above:

0<e<l1, |z|]— +4oo. (24)

In the first point above, we obtain an optimal decaying rate of solutions (22) as long as [, uo(y)dy # 0.
In particular, this property is verified by the physical models from the equation (5) to the equation (9), with
the respective values of the parameter n detailed above.

On the other hand, the second point above shows us that this decaying rate can be improved to |u(t, z)| <
1/]z|™"¢ (with 0 < ¢ < 1) in the case of zero-mean initial data. To the best of our knowledge, the value
€ = 1 seems to be the maximal one to improve the decaying rate. This is due to the fact that the solutions
of equation (1) are written in an explicit mild formulation (27) involving the function K, g(¢,x) defined
above. So, the sharp spatially decaying properties of this function (given in Proposition 2 above) eventually
block an improvement in the decaying of the solution for € > 1.

Notation. In order to get rid of some unsubstantial constants, for A, B > 0 we will use the notation
A < B to mean that A < ¢B with a constant ¢ > 0 which does not depend on A nor B. Similarly, we shall
write A ~ B when ¢jA < B < ¢aB. On the other hand, the Fourier transform (in the spatial variable) of a
function f is denoted by f or F (f), while F~1(f) stands for the inverse Fourier transform.

Organization of the paper. This paper is divided in two big sections: in Section 3 we give a proof
of all the results stated in the well-posedness theory, while Section 4 is devoted to proving all the results
stated in the spatially decaying theory.

3 The well-posedness theory

3.1 Kernel estimates I
Let K, (t, z) be the solution of the linear problem (17). Then, by definition of the operators D, D$ and
DZ, given in the formulas (3) and (4) respectively, for all ¢ > 0 we have

Kop(t,x)=F 1 (ef(im(&)&+(|§\%|g\ﬂ)>t) (z)

w1 =11m a B .
_ 7 (e—f(g)t> (), th f(¢) (€& + (1&l* = 1¢17) (25)

In what follows we summarize some properties of the kernel K, g, which will be useful in the sequel.

20—~

Koplt, )| Stoe+ta +1.

Lo

to

Lemma 3.1 Let ¢ > 0. For all t > 0 we have

Proof. By (25) for all £ € R we have ‘@(t,f)‘ = (el =el?)e, Then, we write

|

We observe that the term I; above can be split as:

20 —

20 a
Kos(t, ") (el —1e1P)e

ta € 5 |7 e-ter e ta g

—

S ’

.

s L°°(|£\§2W) L (\5|>2“1f5> (26)

=0 + I5.

20 o 20 a
I < H 1 e[ el —lelP)e 1t "7 el —lelPe Lo+ Ty

"

Lo=(e|<1) = (1<|s\szﬁ)

10



Here, to estimate the term I 4, since |¢] < 1 we write —(|€|% —[£]%)t = (|€]° —[€]%)t < |€]Pt < t. We thus get
o 1
Iig S tael. Similarly, to estimate the I, since 1 < |¢| < 25=F we have —(|¢|* — |£|®) < 0 and we obtain

~

o 1
Ly S ¢« . On the other hand, to estimate the term I, since €] > 25-7 we get —(|€|* —[£]F) < —1[¢|* and
we can write

ta 13 2 e~ lEl™ tif 2 e—\téﬂo‘

125‘ <1

Lo Qgpgfﬁ) L (R)

By gathering the estimates on the terms I 4, 11 and I we obtain the wished result. [ |

With this estimate, we are able to prove the following result.

Lemma 3.2 Let s € R and let s;1 > 0. There exists a constant ng > 0, which depends on s and «, such that

Mot
the following estimate holds || Ko g(t,-) * ¥ grs+s1 S % 0] s -

Proof. By the Holder inequalities we write:

s+sl

—_— — ﬂA
S Kap(t )@, < a1 TR )|

1Kt )+ ¥l v = [[(1+1%)

1+ 1639

2’

where we must estimate the quantity H(l + ]§|)871/a;(t, )HL . We thus have

|a+ 1 Kane. )|, . |Kantt)||, . + ||l Kaptt. )|

L Loe

Now, in order to estimate the first term on the right-hand side, by Lemma 3.1 (with o = 0) we obtain
H@(t, -)HL Sel+1.

For the second term on the right-hand side, we use again the Lemma 3.1 (with o = 3}) to get

|

By gathering these estimates, and by setting a quantity 7o = n¢s1, @) > 0 big enough, we finally obtain

S§1 —— < t 1
Rapt,)| ser+1+ .

@

e Baae, )|, = = |1+

Le

o 1 elta4ta4+1 _ et
Ja+ e R )| et 14 = S 5

Finally, we state our last technical lemma. The proof essentially follows the same computations performed
in [9, Lemma 4.1].

Lemma 3.3 Let s € R, 6 > 0 and let € > 0. Then, these ezists a constant C = C(s,e,9) > 0, such that for
all e < t1,to <T we have:

1Kas(tr, ) * ¥ = Kag(ta, ) # ¢l gars < C ltr — ta] || .

11



3.2 Sharp local well-posedness
Proof of Theorem 1
The case 72,73 # 0 and a > 7/2.

We divide the proof in three main steps, which we will prove in the technical theorems below. Precisely,
in Theorem 3.1 we prove the local well-posedness of the equation (1) in a space E:* C C([0,T], H5(R)) for
1 —a/2 < s <0, while in Theorem 3.2 we prove the local-well posedness in a space F;2* C C([0,T], H*(R))
for 0 < s. Only for technical reasons, we shall divide or study in the cases 1 — a/2 < s < 0 and 0 < s.
Finally, in Theorem 3.3 we study the regularity of solutions.

Local well-posedness. Solutions of the equation (1) are constructed as the solutions of the following
(equivalent) problem:

t
(t,) = Kot xuo(0) = [ Kaplt = 7. % (100,(2) 4 720202) + 30 (0,0 (re) dr, - (20)

0
where the kernel K, 5(t, ) is defined in (25). The parameters v1,72,73 do not play any substantial role in
local well-posedness theory, so for the sake of simplicity we shall set them as v; = v9 = 73 = 1. On the

other hand, we recall the following well-known estimate on the Beta function, which we shall fully use to
study the nonlinear terms above. For a > —1 and b > —1 we have

t
/ (t— T)adeT < gatbHl (28)
0

The case 1 — /2 < s <0. Let 7/2 < a and let 0 < T'. We define the Banach space

E7* ={ueC([0,T],H*(R)) : |ju

s,a < +00}, (29)

with the norm
Isl 1+]s|
[ulls,a = sup |lu(t, )ms + sup tallult, )|z + sup t7a [|Oyu(t, )| L2 (30)
0<t<T 0<t<T 0<t<T

The second and the third term of this norm will be useful to handle the nonlinear terms in the equation
(27) (see the Proposition 3.2 below). Now, for a time 0 < 7" < 1 small enough, we shall construct a solution
u(t,z) to this equation in the space E;.

Theorem 3.1 Let o > > 0 with a > 7/2, let 1 — a/2 < s <0, and moreover, define the quantity

S 5
n:a—%+1>0. (31)

For any uy € H*(R) there exists a time

T = T((|ug| 1+) < min (1 1) , (32)

1 )
43/ | 117

and a function u € EZ®, which is the unique solution of the equation (27). Moreover, the flow-map function

S:H*(R) — E;x* C C([0,T], H*(R)) defined in (12) is smooth.

Remark 1 The quantity n appears in the estimates to handle the whole nonlinear term 9,(u?) + 02(u?) +
(O,u)?. See the Proposition 3.3 below. Thus, the constraints 7/2 < o and 1 — a/2 < s ensure that 0 < 1.
Indeed, by (31) the inequality 0 < 1 is equivalent to the inequality % —a < s, but since 1 —a/2 < s and
7/2 < a we can write 5 —a <1 —a/2 <s.

12



Proof. We start by studying the the linear term in the equation (27).

Proposition 3.1 We have K, g(t,-) xug € E3* and || Ko g(t,-) *uoll, , < [luoll s -

Proof. We shall study separately each term in the norm |[K,g(t,-) * uo||, , defined in (30). For the first
term, by Lemma 3.2 (with s; = 0) and since 0 < T' < 1 we get

sup [|Ka,p(t, ) * uoll s S [luollas (33)
0<t<T

We also have K, g(t, ) xug € C([0,T], H*(R)). Indeed, on the one hand, for ¢ = 0 by a standard convergence
dominated argument we get 1im+ | Kap(t, ) *ug — uollgs = 0. On the other hand, by Lemma 3.3 (with
t—0

s1 = 0) we obtain K, g(t,-) *up € C((0,T], H*(R)).

In order to estimate the second term, first we need to verify the following pointwise estimate:
tat
—

1+
Indeed, again by the fact that 0 <t < T <1, we just write

ta <

2 sl
)2
; (34)

1
taf

Isl s 2
Halen® = (8) T e ® - (s

2>2§<1+

Once we have the estimate (34), we obtain

I ENIE]
to [[Kap(t, ) *uol . < taKa,ﬁ(t,')uo‘LQ < _ T Kot ) o
(14 [€%)2
L2
SN RE]
1+ e

Kap(t,) (1+ €225

IN

(1+1€2)'F (14 |¢)e/?

L2

= (4).
2

—

1|2 18l §/2 —~
tagl )2 Kaplt,) (14163 ug

= ’(1+

s

The, by the Hélder inequalities and by Lemma 3.1 (by setting first ¢ = 0 and then o = 5') for all
0<t<T <1 we get

—

(A) S H@(f, ) (1 + |£|2)5/2a6‘ téé’ 2)% Ka,ﬁ(t, ) (1 + ’g|2)s/2a‘a

|
L2 L2

o 1 2 |s| ——

< [|Reste.] - ool + [qere® Boe)| ol
Loo
sl Isl
S (e + Dlfuolls + (to €f +ta +1)||ug| ms
S lluollas-
We thus obtain "
sup tao ||Kap(t, ) *uoll2 S [luollms- (35)

0<t<T
We study now the third term. First, we remark that by (34) we have

13



Then, by following the same computations to prove the estimate (35), we write

wlt ) * 0l < Koot )]
s
1 (1 -+ )7 — 9\ S~
< ||[t=€ Bl — Kap(t,-) (1+[€7)2 ug
(1+ 1) 2 (1 +[ef): .
2 s
(]' + )‘ ‘2+1 — 2\ S~
N ~ Kap(t,) L+ [E17)2uo) < lluollms-
(L4 JE2) 5 (1 + €3
L2
We thus obtain
sup t e (105K a,s(t, ) *upll 2 < uolle. (36)
0<t<T
The desired estimate follows from (33), (35) and (36). Proposition 3.1 is proven. [

We study now the nonlinear terms in the equation (27). For this, we shall need the following useful
technical estimates. Particularly, we shall observe the use of the second and the third terms in the norm
| - lls,a given in (30).

Proposition 3.2 Let 1 —a/2 < s <0 andlet 0 < o < 3. For all0 <t <T <1 the following estimates
hold:

2
L [ Rasti=r s i ar| g oo <Sup t'i'uua,-)w) |

s 0<t<T

2
2| [ Kestt— s ot e g g (Sup t'i'uuu,-)nﬁ) |

0<t<T

2
t 2
3. /Ka,ﬁ(t—f,.)*(—ag)‘é((axu)Q)(T,-)dT < - <sup 2 1 9,ult, )||L2> .
0

0<t<T

2
| [ Kast = m = o E @ ar| g (SUP ot W) |

12 0<t<T

Proof. Let us prove the first point. Since s < 0 we can write

| [ st (02320

< [+ iepyroie Kot - @ )(r, )|, ar
Hs 0

L2

(37)
t —_—
S/O H\f!s+aKa,g(t — 7, )@= a)(r, .)HL2 dr < /D ”‘ﬂs—&-ﬂKa’ﬁ(t — .)HL2 (@ * 8) (7, ) || oo -
The first expression on the right-hand side can be estimated as follows:
— sto 1
g Rast =7 , s =17 . (39)

o o (ke .
Tndeed, we split | Ko 5(t — 7, 5)‘ _ el t=r) _ o~ ) (1) ). and for x = (f — 7)5€ we

14



write

~ (5 -gf) =)

IN

H|£‘s+a e

el Kot - 7.-) e

L? L? Loo

1 |«
sto [0 H - (= —1g7) -
(&

s+o

(t =)~ ||t - n)me

IA

€ 2

LOO
L2

— (4 -el?) =)

s+o "@‘a
< (t=m)7 T |t e

L2 Lo

s+o 1

< (t—7)

In order to estimate the second expression on the right-hand side, by the the Young inequalities (with
14+ 1/oo =1/2+1/2), by the Plancherel’s identity and by the second term in the norm || - ||s o, we have:

|@* @) (7)o S 70 ( sup TZQSIIU(T,-)H%2> : (39)

0<r<T

With the estimates (38) and (39) at hand, we get back to (37) and we write

H/ Kot =7, » (=00) () (r. )|

(40)
s+o 1 _ 2s| 2[s| 2
< (/ (t— 7)o dr) <sup £ ||u<t,->\p>-
0 0<t<T

To estimate the integral above, in the formula (28) we set a = —*£% — % and b = —%.
Remark 2 Since 0 <o <3 and s < O we have a = —S‘fT" - % > —1 as long as o > 7/2. Moreover, since

2\3\

s>1—a/2>—a/2 we have — 5> —1.

o
Thus, a direct application of (28) yields /t(t = 7_)75%07i T dr < go/a=(eH1/2)/at1 - With this estimate
the first point of this proposition follows.

The other points of this proposition follows similar estimates. Indeted, for the second point, we just remark
that in the estimate (38) we set now s = 0, which yields the integral/ (t— T)*%*i T dr < g2s/am(o41/2) ot

0
For the third point, we follow the same computations in the estimates (37) and (38) to write

< /t(t—T)_SzU_Qla @By, )||
0

LOO

a8t = 7.) % (=02)% ((8zu)*) (7, ) dr
He

0
t sto 2(14]s]) 2(1 ls])
< </ (t—71)" : *iT’ = d7'> sup 5 || Oz u(t, )HLQ .
0 0§t<T

2(1+[s))

(41)

In the formula (28) we set now b = —

Remark 3 We have — (H'S') >—1aslongas1l—a/2<s<0.

t
sto 2(1+]s])
Then we obtain / T (t—7)" e ar < ¢#/a=(@+5/2)/at1  Rinally, for the fourth point, we also fol-
0

! o 201+[s))
low the same computations above, where we have the integral / (t— T)*E*i T dr S g2/em(eFs/2) /et
0

Proposition 3.2 is proven. |

With these estimates at our disposal, we directly obtain the following proposition.
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Proposition 3.3 Let n > 0 be the quantity defined in (31). The following estimates hold:

t
[ Kaplr.) s 0utu)e =m0y ar| Sl
0

S,

t
2 || [ Kaslr) syt = ryar| STVl
0

S,a

| [ Kastro e @utie—ryar| s,

S,Q
Proof. The first estimate follows from the first point and the second point of Proposition 3.2 with ¢ = 1
and o = 2. The second estimate also follows from these same points whit ¢ = 2 and ¢ = 3. Finally, the
third estimate follows from the third point and the fourth point of Proposition 3.2 withc =0 and o =1. R

Consequently, existence and uniqueness of a local in time solution v € E;* C C([0,T], H*(R)) follow
from standard arguments, provided that the condition (32) holds. Moreover, the smoothness of the flow-map
function S : H¥(R) — EZ2“ also follows from well-known arguments, see for instance [15]. Theorem 3.1 is
proven. |

The case s > 0. The key idea to prove the local-well posedness in this case is to use the estimates
performed above. We thus start by proving the following useful lemma, which is a product law-type in
the Sobolev spaces. Let us mention that for a parameter z € R we shall denote the Bessel potential
(I — 92)% = J*, which is defined in the Fourier level by the symbol (1 4 |¢]?)Z.

Lemma 3.4 Let s; <0 < s. The following estimate holds: ||f gllms S (T*5f) gll s + 11.F (T57529) || o1 -
Proof. The proof follows from the pointwise estimate:

L+ EDEF+ ) S 1 +1eP? ((+1eD = 1A) «[31) © + (11« (A +1eDF5)) - m

With this lemma at our disposal, we are able to estimate the product f ¢ in the norm of the space H*(R)
(with s > 0) in terms of the products (J* *'f)g and f(J* *'¢) in the norm of the space H*'(R) (with
s1 < 0). Consequently, we can use the estimates above as follows: for o > % we set 1 — § < s1 < 0. Then,
for s > 0 and for a time 0 < 7T < 1 small enough, we define the Banach space

< 400},

Fp® ={ueC([0,T],H*(R)) : |

with the norm

ult, )| 2
u(t,-)| 2

Is1l
[ulls,as = OiufTH“(t">”Hs + sup £ Ju(t, )|
== (42)

+osup £d g ( ol
0<t<T

Let us briefly explain this norm. The second and the third terms are the same used in the norm || -
defined in (30). Moreover, as we consider here s > 0, the fourth and the fifth term will allow us to easily
estimate the nonlinear terms of the equation (27) in the norm of the space H*(R). Thus, we can state our
second technical theorem.

Theorem 3.2 Let a > 3 > 0 with o > 7/2, let s > 0, 1 — § < 51 < 0, and moreover, let n > 0 be the
quantity given in (31).

For any ug € H*(R), there exists a time T = T(||uo||grs) given in (32) and there exists u € F7'“ a unique
solution to the equation (27). Moreover, the flow-map function S : H¥(R) — Ex“° c C([0,T], H*(R))
defined in (12) is smooth.
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Proof. As mentioned, the proof uses the estimates already proven in the previous case when 1—a/2 < s < 0;
and it follows very similar ideas. So, it is enough to give a briefly proof. The linear term in the equation
(27)) is easy to estimate and for uy € H*(R) we have

1Ko p(t:-) (43)

We study now the nonlinear terms. For the first term in the norm || -5 4,0 (given in (42)) by Lemma 3.4,
by the first point of Proposition 3.2 (with o = 1), and moreover, by recalling that n = = — 3> +1 < 22— % +1,
for 0 <t <T <1 we write

a8t = 7,°) % 0o (u®) (7, -)dT

HS

< H /0 Kaglt—7-)  00((T" " u)u)(r, -)dr

ap(t—7,) % 0p(u (T**u))(r, - )dr

Hs1 Hs1

s_ 3 lol _ Is1l
Stazatt ( sup teo [|J° Uu(t,')Hm) <OSUPT75 o lu(t, )||L2> < et fu)2 . < T ul? 0,

0<t<T

are treated

t
/ Ko g(t—7,-) % 02(u?)(r, )dr and H/ K, p(t s (Opu)? (T, )dr

0 Hs Hs
similarly, where we use again the Lemma 3.4 as well as the Proposmon 3.2. Moreover, remark that the

second to the fifth expressions in the norm || - ||sa,0 (see (42)) where already estimated in Proposition 3.2.
Thus, the following estimate holds:

The other terms

<17 (44)

0a(ry ) (00(u?) + O2(u?) + (Byw)?) (¢~ 7,-) dr

|U’Hs ,Q, 81"
S,a0,81

Consequently, Theorem 3.2 follows from arguments already studied in the previous case when 1 — § <
s < 0. [ |

Regularity of solutions. In our last technical theorem, we study the regularity (in the spatial variable)

of solutions constructed above. We recall the standard notation H*°(R) = ﬂ H"(R)
r>8s

Theorem 3.3 Let a > > 0, with o > 7/2. Let u € ER* (when1—a/2 <s<0) orlet uw e F™? (when
0 < s) be the solution of the integral equation (27) given by Theorems 3.1 and 3.2 respectively. Then we
have w € C((0,T], H*(R)).

Proof. We shall prove that each term on the right-hand side of the equation (27) belongs to the space
C((0,T], H*(R)). For the linear term K, 5(t,-) * ug (with ug € H*(R)) by Lemmas 3.2 and 3.3 we directly
have K, g(t,-) * ug € C((0,T], H*(R)).

We study now the nonlinear term in (27), where (for the sake of clearness) we shall consider the cases
1 —a/2s <0 and 0 < s separately.

The case 1 — a/2 < s < 0. For the sake of simplicity, we shall write

B(u,u) = 85 (u?) + 9% (u?) + (8pu)?, (45)
and for all 0 < t < T fixed, we will prove that there exists 0 < § small enough such that we have

s  s+6+5/ 2 6 52
< BT e 25 STOES2 g
[0

~

Hs+5 (67

a,p(t ) * B(u,w) (T, -)dT

We consider here the following subcases: first when s + § < 0 and thereafter when 0 < s + 6.
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In the case s + ¢ < 0, by the first point of Proposition 3.2 (with ¢ = 1 and ¢ = 2 respectively), and
moreover, by the third point of Proposition 3.2 (with o = 0) we directly have

t 5
H/ Ko gt = 7,0« Bluu)(r,)dr| 5 (8550736 4 55075 Ju)2,,
0

Hs+5

Moreover, since 1 — a/2 < s < s+ < 0; and as we have 0 < t < T < 1, the term on the right-hand side is

estimated from above by %5 =321, We thus get:
s+46 5

——+1 . 4
2a+ >0 (47)

< et |ful|2 with

~ s,a)

/0 Kog(t —7,7)  B(u,u)(r,)dr

’st

We consider now the case when 0 < s + §. Here we write:

/ Ko p(t—7,-) % B(u,u)(t,-)dr / Kop(t—7,-) % B(u,u)(t,-)dr
0 0

HS+6 B ’ L2 (48)
s5+6

2 B(u,u)(r,-)dr

—+

)

L2

/ Kop(t—r1,-)% (—(9:%)
0

where we must estimate each term on the right-hand side. For the first term, by the second point of
Proposition 3.2 (with 0 =1 and o = 2) and by the fourth term of Proposition 3.2 (with o = 0) we have

For the second term, we use again the second point of Proposition 3.2 (with o = s+d+1and 0 = s+ 0+ 2)
and we use again the fourth point of Proposition 3.2 (with o = #) Moreover, we set 0 < § < s — % + o

2s 5 S 5
< tazatl||yl? ith = — — +1>0. 49
L 207 Jull5.0 5 with —— o+ (49)

/0 Kot —7,-) % B(u,u)(r,-)dr

(since a > 7/2 and 1 — /2 < s we have 0 < s — 3 + a) to obtain that 25 — % +1 > 0. Then we have
t : s s+6+5/
[ Kasle =7 (o) ¥ Bu(rgar| 8 (50)
0 L2
Once we have the estimates (49) and (50), we remark that 2% — 2 +1 > 25 — % + 1, hence, since

25 5 2s  s+6+5/2
0<t<T<lwegettoa 2att<ta " o Tt

s+0
respectively. Moreover, remark that we have o

. We get back to (48) and we obtain

25 s+0+5/2 . 2s s+6+5/2
<ta o Tl Hu||§’a, with — — 7/ +
Hs+é «

/t Ko p(t—7,-) % B(u,u)(r,-)dr 1>0. (51)
0

Thus, for both cases when s +0 < 0 and 0 < s+ J, the wished estimate (46) follows from (47) and (51)
,2L+1 < tﬁ,MJrl

We study now the continuity in the time variable. Let € > 0 and let ¢ < t1,to < T < 1, without loss of
generality we assume that ¢; < to. Then we write

to t1
‘ Ko p(to —7,-) % B(u,u)(r,-)dr — Ko p(ti —7,-) * B(u,u)(r,-)dr
0 0 Hs+5
to
< ‘ Ko (ta —7,-) * B(u,u)(r,-)dr (52)
t1 Hs+o
t1
+ / (Kap(te—7,-) = Kopg(ti — 7,°)) * B(u,u)(,-)dr .
0 Hs+5
For the first term above, by following the same estimates performed in (46) we have
t2 25 s+6+5/2
‘ Kap(ta = 7,) * B(u, u)(7,-)dr Slta—t)a o T, (53)
t1 Hs+6
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We estimate the second term above. Getting back to the expression (25), we have

H/t (Kap(ta = 7,7) = Kag(ts = 7,)) x B(u, u)(r, -)dr

<)

where we study the expression |e~f ©)(t2=7) _ =f (5)(“_7)‘ First, we remark that the function |f(£)| (given

Hs+(5

B(u, u)(r,")

dr,

L2

(1+ €[2)F ‘ ~F@(t2=7) _ o= f(©)(t1-7)

n (25)) is of polynomial growth and moreover for i = 1,2 we have |e=/(Ot=7)| = (€~ €M) E-m) < 1.
Then, by the mean value theorem in the temporal variable there exists to € (0,tg — t1) such that

’e—f(é)(tz—T) — e O Z eSOt ’(e—f@)(m—tl) _ 1)‘

e~ @)t=7) ]f(§)|e_(|§|a_|§|6)t0(t2 —t1) S| (6)] e—(\&l“—\&l’a)to(t2 —t)

~

<
< <‘f(§), 6—(|§|"—\5I6)%°> e =EINB (1) — 1) < e~ =IEDF (1, — 1),

We get back to previous estimate and we use the definition of B(u,u) given in (45) to write

/tl
0

(14 |¢2)" 2" dr

e Ot=1) _ =IO By w)(r, ,)‘

L2

S =t [+ gy T 0 e gy |, dr
Flta =) [0 i S G By |, e
S (-l
We thus have
[ Kaptte =) = sl =m0« B)rdar| % - wllfe 60

t
Finally, by the estimates (53) and (54) we obtain / Kop(t —7,-) % B(u,u)(r,-)dr € C((0,T), H**°(R)),
0

and consequently we have u € C((0,T], H*°(R)) for 0 < § < s — % + «a. By bootstrapping this procedure
(in order to obtain a gain of regularity for the nonlinear term) we conclude that w € C((0,T], H*(R)).

The case 0 < s. In this case we have very similar estimates to the previous ones: we essentially follow
the ideas of the proof of Theorem 3.2, we use the Lemma 3.4 and the norm [Ju||2,, ;, instead of the norm
Jul|2,,. Theorem 3.3 is now proven. [

Once we have proven the Theorems 3.1, 3.2 and 3.3, in order to conclude with the proof of the whole
Theorem 1 we must verify that u € C1((0,7],C%(R)). Indeed, by Theorem 3.3 we have u € C((0,7T], H*(R))
and then for 0 < ¢ < T the solution u of the integral equation (27) (constructed in Theorems 3.1 and 3.2)

also solves the differential equation (1) in the classical sense. We thus write dyu = — D(9,u) — (D;‘ -Df )u—

Oz (u?) — 0%(u?) — (9,u)? to get that dyu € C(]0,T], H*(R)). Thereafter, we can follow the same ideas at the
end of the proof of [9, Proposition 4.2] to obtain d;u € C(]0,T],C>®(R)) and therefore u € C*(]0,T],C>®(R)).

The case 72 =773 =0 and a > 2.

In this case, recall that that mild solutions of the equation (1) write down as
u(t, ) = Ko s(t,-) * uo(a / Kog(t—7-) 0 (u) (7 )dr. (55)
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As is the proof of Theorem 3.1, for & > 8 > 0 with a > 2 and for —§ < s < 0 this equation is locally
well-posed in the space (with 0 < T' < 1):

e ={ueC(0, T, H*(R)) : [ullsaz2 < +00},

with the norm
sl
lulls,2 = sup [Ju(t,)|[ms + sup teflult,)|
0<t<T 0<t<T

Indeed, we shall detail the bilinear estimates. We get back to the estimate (40) (with o = 1) to obtain

t
s ‘S‘ ‘3‘
< ( JRE) d) (sup t2a||u<t,->|%z>. (56)
Hs 0 0<t<T

In order to study the integral above, observe that since s < 0 we have —5*1 — L >~ _1 aslong as a > 2, and

a 2
2[s|
«

N

t
/0 Kopg(t—1,) % ax(u2)(7', dr

moreover, we have — > —1 as long as —§ < s. Then, we apply the estimate (28) to obtain this integral

s 3
computes down as t'*a"2a. Moreover, remark that 1+ s - % > 0 as long as s > % — . Consequently, we
have

ST a5 |ul2 0
Hs

sup
0<t<T

/0 Kop(t—1,-)* 8x(u2)(7', dr

Then, by the second point of Proposition 3.2 (with o = 1) we have

sl
sup te
0<t<T

3
ST e ||u”§,a,2'

/ Kot — 7,) 00 (u?) (1, )dr
0 L2

By these estimates we have the locally well-posed in the space £, with max (3/2 — o, —/2) < s < 0.

Thereafter, in the case s > 0, by following the same arguments in the proof of Theorem 3.2 we also have
the locally well-posedness in the space

Fr® ={ueC([0,T], H*[R)) : |[ullsas 2 <+oo},

where for max (3/2 — a, —a/2) < s1 < 0 we define
L1l L1l —
[ulls.csr2 = sup flu(t,)|[gs + sup ¢ flu(t, )|z + sup ta [T ult, )| 2.
0<t<T 0<t<T 0<t<T

Finally, with minor modifications, the statement of Theorem 3.3 (regularity of solutions) also holds true in
this case. Theorem 1 is now proven. |

Proof of Theorem 2

Let us briefly explain the strategy of the proof. We shall assume that the equation (1) is locally well-posed
in the space H*(R) when s < 1 — «/2 (when 72,73 # 0) and s < —«/2 (when v2 = 3 = 0) respectively.
Moreover, we shall assume that the flow-map function S : H*(R) — C([0,7], H*(R)) (defined in (12)) is a
C%— function at ug = 0. In particular, this implies that the second Fréchet derivative of S(t) at ug = 0,
defined as D3S(t) : H*(R) x H*(R) — H*(R), (vo,wo) + D3(vo,wp), is a linear and bounded operator.
Our general strategy is to construct well-prepared initial data (vg,wp) € H*(R) x H*(R) to contradict the
boundness of the operator D3S5(t). The proof is divided in three steps: first, we shall explicitly compute the
operator D%S (t). Then, we shall construct the well-prepared initial data and in the last step we shall prove
the unboundedness of the operator D3S(t).

The operator D%S (t). Our starting point is to explicitly compute this operator. In all the computations
bellow, the limit is understood in the strong topology of the space H*(R). Let us start by computing the
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first Fréchet derivative of S(t) at up € H*(R) in the direction vg € H*(R). Recall that by (12) and (27),
and moreover, for the bilinear form B(:,-) defined in (45), we have

S(tyuo = ult, ) = Kag(t, ) % uo —/0 Ko (t —7,-) % Blu, u)(r, ) dr,

B(u,u)
with
Blu,u)(r,) = (1 00(u?) + 7 02(u?) + 75(000)? ) (),

For the sake of simplicity, we shall write S(t)ug = K, (t,-) * up + B(S(t)uo, S(t)uo), where this bilinear

form is symmetric. Then, we have

S(t)(uo + hwvg) — S(t)uog

D,,S(t)vg = lim

h—0 h
~ im Ko p(t,-) * (uo + hvo) — Kqap(t,-) * uo
h—0 h
(57)
' B(S(t)(uo + o), S(8) (ug + hv0)> - B(S(t)(ug), S(t)(uo))
+m h

= Ko p(t,) % vo + 28(S(t)uo, S(t)v()).

We compute now the second derivative D2 S(t) at ug = 0. First, for up,vo € H*(R) fixed, we define the
function z € R+ Dy, S(t)vg € H*(R); and by following similar computations performed in (57) we have

Oy Doy S(t)v0 = QB(DmOS(t)uo, DwOS(t)vo) + 25(5(15)(%0), D2, S(t)(uo, v0)>.

We thus set * = 0, and moreover, by the identity S(¢)0 = 0 and since by (57) we have DyS(t)vg =
Ko 5(t,-) * v, we obtain

D§S(t)(uo, vo) :28<Ka,ﬁ(ta ) xug, Kapl(t,-) Uo)
t (58)
:2/ Kop(t—1,) % B(Ka,g(’r, ) xug, Ko p(T,-) * v(]) dr.
0

Well-prepared initial data. Let NV € N* fixed such that N > 1. Moreover, let r € R fixed such that
r ~ 1. We consider the disjoint intervals [-N, —N + ] and [N + 7, N + 2r|. Then, we define the functions
vo and wq as

vo=r""PNTF N (v (©) s vo=1TENTF T (g ng2n (6)) - (59)

We will verify that ||vg||gs ~ 1 and ||wg||gs ~ 1. Indeed, for the function vy defined above we write

—N+r
ool = [ 1P N dg =N [ ey,
R -N
Here, as £ € [-N,—N + r], and moreover, as N > 1 and r ~ 1, we have || ~ N and 1+ [£]*> ~ N2
Consequently, (1 + [£]?)® ~ N25. We thus obtain
—N+4r —N+4r
7,71]\[723 / (1 4 ‘£|2)Sd€ ~ ,rlefZS N2$ / d§ - 1.
-N -N

The function wy follows the same estimates and we also have ||wgl|gs ~ 1.
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The unboundedness of the operator D35(t). With the particular initial data constructed above,
we shall prove the following estimates from below: for N € N such that N > 1

N2(=s=a/2) < D2S(t)(ug, vo)||gs, when s <1—a/2,

(60)
N2=s=a/2) <||D2S(t)(ug,vo)|| rs, When s < —a/2.
Indeed, by the identity (58) we write
t
ID8S() o wolle =2 (141693 7 ([ Kaplt = 7 B(Kuplr) s 0 Kol ww) ar )| (61
0 L2

Then, for t > 0 and £ € R we define the function
t
9(t,€) = F < / Ko gt = 7,%)  B(Kap(7,) % u0, Koys(r,") 10) d¢> (&),
0

and recalling that @(t,{) = e 1O (with f(&) = im(€) €+ (€] — |£])) we can prove the following
identity which, for the reader’s convenience, will be postponed to the Appendix 4.3:

0.6 = [ (i€ =€ 6w Tle ~mitn) o T (o)
R f&) = f(n) = f(&—n)
Now, we prove the following estimate from below.
Lemma 3.5 The following estimates hold:
1. When 72,73 # 0, we have N*727% < |g(t,£)].
2. When v3 = 3 = 0, we have N~27% < |g(t,€)|.
Proof. We must study each term inside the integral (62).
1. Assume that 79,73 # 0. For the first and the second term we have
(v13€ = 7267 = 73(& = m)n) (€ — n)do(n) ~ N7, (63)

Indeed, recall that ug and vy are defined in (59) and we thus have ug (€ —n) = r— /2N % Ty N (§—
n). Here { —n € [-N,—N + r] is equivalent to N —r + & < n < N + £. Moreover, we also have
to(n) = r~ V2N LinyrN42r) (). Then, since N € N such that N > 1 and r ~ 1, we remark that
the intervals N —r+& < n < N+ &and N +1r < n < N + 2r are not disjoint, provided that
r < £ < 3r. Hence, we obtain £ ~ r. On the other hand, since N +r < n < N + 2r we are able
to write 7 ~ N. Consequently, we obtain the estimates (712'5 e n)n) uo(& — m)vp(n) ~
(7“ 4 N2 + 7.2) T71N72s ~ N27,71N723 ~ N272S.

2. Assume that vy9 = 3 = 0. By following the same arguments above we have
(7€) up(€ — )T () ~ N~ (64)
On the other hand, for the third term we have the estimate
f(&) = fn) = f(€—mn) ~ N (65)

Indeed, recall that f(&) = im(€) € + (|€]* — |€]°), where the symbol m(€) is defined in (3) and we have
im(€) & ~ & when D = 82 or im(€) € ~ &2 when D = Hd,.. Moreover, recall that £ ~ 1 and  ~ N. Then,
since a > 8 and a > 7/2, for both cases D = 92 and D = H, we have f(&) — f(n) — f(€—n) ~ f(n) ~ N
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With these estimates (63), (65) and (65) at hand, we get back to identity (62) to obtain the wished
estimates from below. [

Finally, we get back to the identity (61), hence we get the desired estimate (60). In this estimate, we
consider first the case s < 1 — /2, hence we have 1 — s — «/2 > 0. Moreover, since ||ug| ~ ||vo|| ~ 1 we
have N2(1=5=/2) < || DZS(t)(ug,vo)|lms < |luollms |lvollms < 1, which is a contradiction as long as N > 1.
Consequently, the flow-map function S : H*(R) — C([0, T], H*(R)) (given in (12)) is not a C?>— function at
ug = 0. The case s < —a/2 follows the same ideas. Theorem 2 is now proven. |

3.3 Global well-posedness
Proof of Theorem 3

As the proof of Theorem 1, we shall consider the two cases of the parameter s:

The case 1 — /2 < s <0 (when 72,73 # 0) or max(3/2 — a, —a/2) < s <0 (when 73 = 73 = 0).

By Theorem 3.3 the solution u € E;* (constructed in Theorem 3.1) is regular enough and then, by
multiplying the equation (1) by w(t,x) and after some integration by parts (in the spatial variable), we

obtain L d
3 allu(t. )1 = = [ (D% = D2)uuds - 22— 30) [ (@ uds (66)
R R

Here we assume that —2v5 4+ v3 = 0 to get

1d - W
gtz == [ (02— D2)uuds

1
We estimate now the term on the right-hand side. By the Parseval’s identity and for M = 2% (remark
that for |£] > M we have |¢|% — [£]* < —|€]?) we write

- [ (02 = DE)uuds = — [ (1€~ 1€ al ag
R R
= [ (e -ter)apag+ [ (e -lee)ardes [ jelarae- [ ellapds o)
|§1<M |§|>M |§1<M |€|>M
< / € af? de < MPJull2,.
|€1<M
With this estimate and by the Gronwall inequality, for all % <t < T we obtain

B
ludt 7z < Mult )z < lu(T/2,)lI72e2M

hence, the solution can be extended to the whole interval [0, +oo].

The case 0 < s. We shall follow similar ideas of [9, Proposition 4.3]. Let ug € H*(R) (with s > 1 —a«a/2
or s > max(3/2 — o, —a/2) respectively) be an initial datum. We define the time 7™ as follows:

T* =sup{T > 0: there exists a unique solution u € C([0,T], H*(R)) of (1) arising from ug} .

We assume the relationship —2v5 +v3 = 0 and we will prove that T* = 4+00. Our strategy is to assume that
T* < +o00 to obtain a contradiction. Always by Theorem 3.3 and by following the same estimates above,
we have the estimate ,
MPT*
lut, )I72 < lluoll72e* . (68)

where we set the constant My = ||u0H%262M6 ™ >o.
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On the other hand, recall that by Theorem 3.2 for any initial datum vy € H?®(R) there exists v €
Fp* c C([0,T], H*(R)) an arising solution of the equation (1), where the time T = T'(vg) is given by the

expression (32). Precisely, we have the bound from above T'(vg) < W and since ||vg|z2 < [Jvo||frs, We
VOollgrs

obtain T'(vg) < Consequently, the time T'(vg) is a decreasing function of ||vg|| 2. This decreasing

1
41/?7”@0“2/2?7 )
property yields that we can find a time 0 < T} < T™ such that for all initial datum vy € H*(R) verifying
lvollr2 < Mj the associated solution v € C([0, T'[, H*(R)) exists at least on the interval [0, 77]; and it verifies
v € C([0,Ty], L*(R)).

Now, for 0 < ¢ < T} and for the solution u(¢, z) (arising from ug) we the initial datum vy = u(T* —¢,-) €
H#(R), which by (68) verifies |[vo|| 2 < Mp. So, there exists a solution v arising from vy = u(T™ —¢, -) which
is defined at least on [0,7}]. Thus, by gathering the functions u(¢, z) and v(¢,z) we get a solution

() u(t,-), when 0<t<T*—g¢g,
’ o(t,:), when T*—e<t<T*—e+T,

which arises from the datum wug and which is defined on the interval [0, T* —e+T}]. But, since 0 < ¢ < T} we
have T* — ¢ + 11 > T, which contradicts the definition of the time 7%. We thus have T* = +o00. Theorem
3 is now proven. |

Proof of Proposition 1

Our starting point is the identity (66), where we must estimate the second term on the right-hand side:

/(Ozu)zudx. We write
R

/(8u) uda:—/auuﬁuda:— /8u8 :—/82uu dx

<|l0Zullz w?llpr < |03ullze [[ull7s-

With this estimate at hand, we get back to (66), hence, together with the estimate (67) we get

1 d 2 — 73 2 2

——|lul(t, - < MP O2u(t, )| poo ||ult, -

5 g et M2 < M7 ut, )HL2+ 2 [0zu(t, )|l Loe [Jult, )72 (69)

S A+ 102u(t, )|l ze) llult, )72
Then, by the Gronwall inequality for all ¢ > T'/2 (where the time T is given by (32)) we have
t
|t ‘)H%z < lu(T/2, ')||%2 et—T/2+fT/2 ”8acu(87')HLOOd57
hence we obtain
t
lu(t, V32 S (T2, )32 e o 1wl llioeds, (70)

From this estimate the blow-up criterion stated in Proposition 1 is obtained as follows: first, let us as-
sume that tlirjr} |u(t, )| s = +o00. This fact yields fOT 102u(t, )||Ldt = +oo. Indeed, if we assume that
4) >k

fOT* |02u(t, -)|| e dt < +o0, then by (70) we get that the quantity [Ju(t,-)[|7, can be extended beyond the
time T*; and by following the same arguments in the proof of Theorem 3, we get that the quantity ||u(t,-)| s
extends beyond T, which contradicts the definition of T%.

Now, let us assume that fOT* 102u(t, ) || L= dt = +o0, which yields lim; 7+ |[u(t,-)||gs = +oo. Indeed, if
we assume that tlir%l ||u(t, )|l s < 400, then by Theorem 3.3 we have u € C(0,T* 4 ¢], H*(R)) with £ > 0.
Ny
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Consequently, for o > 1/2 we have fOT* |lu(t, )| g2+odt < +00. Then, by the continuous Sobolev embedding
L>*(R) C H?(R), we write

T* T* T*
/ |02u(t, || pdt < / |02u(t, )| o dt < / lalt, Y gzsodt < +oo,
0 0 0

which is a contradiction. We thus have tlir:rpl ||u(t,-)|| s = 4+o00. Proposition 1 is proven. [
_) *

4 Spatially decaying properties

4.1 Kernel estimates 11
Proof of Proposition 2

Since the definition of this kernel involves the operator D defined in (3), we shall consider the following cases:
when D = H0O,, we shall refer as the nonlocal dispersive effects due presence of the Hilbert transform. On
the other hand, when D = 8% we shall refer as the local dispersive effects. Moreover, recall that the action
of the operator D is given in the Fourier level by the symbol m(§), which is also given in the expression (3).
Then, for the sake of clearness, we shall the identity (18) in the following technical propositions.

Proposition 4.1 (The nonlocal dispersive effects) Let D = H0,, where we have m(§) = |£|. Let
a> 3 >1 witha > 2. Fort >0 there exists a quantity I1(t), which verifies |I(t)| < Ce™! with C > 0 and
m > 0 depending on o and B, such that for all x # 0 the following estimate holds:

_ @)
[Kap(t, )| = PGB

where [] denotes the integer part of B.

Proof. We start by explaining the general idea of the proof. This idea was inspired from the previous works
[8, 9]. By the expression (25), for z # 0 and ¢ > 0 we write

0 . +o0o )
Koc,ﬁ(t,ﬂf) _ / 62mx56—f(§)td€ Jr/ ezmzée_f(f)tdf,
o B

In each term on the right-hand side, we multiply and we divide by 27i x to get:

1 0 . 1 +oo )
Kap(t,z) = 5 / omix 2™ e~ f (O ge 4 — / iz 2™ e~ Ot gg.
T J 0o 2miz Jo

Then, since 27iz e?™ %€ = O¢ (62” g ) we integrate by parts respect to the variable £ to obtain

- 27712';5 <_1 /_ (; €* O (e_f(g)t) de + (emm5 <e_f(€)t>> ‘;)
27r1i:c <1 /0+<><> €’ O (e_f@)t> de + (62m5 (e_f(g)t» ‘om> '

By iterating this process n times, we formally obtain the following expression:
Ko p(t,z) = 1 (—1) /0 p2mizé gn (e—f(g)t> dé + <€27rix§ g1 (e_f(g)t>> ‘0
AT (2miz)™ oo ¢ ¢ —0o0
1 +oo i . “+00
_1\n mixé an [ —f(&)t 2mixé an—1 [ —f(&)t ‘
+ (2miz)" <( 2 /0 c % (6 )d£+ (e % (6 )) 0 ) ’

and this iterative process continues until we have one of the following scenarios:

Ko p(t, )

+
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e On the one hand, this process stops at the step n when for the next step n + 1 we have

0 21 1 oo 21 1
/_ K miag gt (e—f@t) dg = +oc, /0 2ot gt (e—f@t) d¢ = +o0. (72)

Precisely, when both integrals diverge at £ = 0 depending on the behavior of the function fntd) (f)
when £ — 0~ and & — 07,

e On the other hand, this process stops at the step n when we have

. 0 . +
L= (st (r @) (nessopt (ern)) | 4o 73
We thus obtain
Kog(t,o) = —2n 4 D / T amiae g (e*f@t) de (74)
@B\ (2miz)"  2miz)" J_o ¢ '
In both scenarios, we conclude the wished identity stated in this proposition: |K,g(t,z)| = ‘fx(‘t,z'. The

generic quantity I(¢) may change in the different cases that we shall consider below, but we always have the
control |I(t)| < Ce™?.

Now, we are able to prove this proposition. For the sake of clearness, we shall consider separately the
following cases of the parameter 5 > 1.

e The case 1 < < 2. By the expression (74) (with n = 2) we write

_ L 1 T omine 2 ()
RKaslt:2) = iy * Gria)? (/_OO et () de ).

Recall that the term Lo (given in (73)) involves the expression f/(£); and by a simple computation we

have:

—2i§ —a(=€)*" + A=), £<0,

f'(€) = (75)

2i¢ + a"t — peh-l € >0.

Thus, when 8 = 1 by this expression we obtain Lo = —2t = 0, and thus we can write
Jr
27721{ 2 f(é' ‘ _ |I(t)|
)] = s |20+ [ e (@) ae] = LRl = i

where [8] = 1. Moreover, by the good decaying properties of the function e~/ ©t and by following the
same computations performed in [8, Lemma 3.1], we have |I(¢)| < C™t.

On the other hand, when 1 < 8 < 2 by the identity (75) we have Ly = 0 and we obtain

K,p(t,z) = b " e2mize 2 (o= F(E)t d&
A (2miz)? \J_oo § :

To study the integral above we need to compute f”(£) and we have:

) 2+ ala—1)(=€)* 2 — B(B - 1)(=)F2, £ <0,
e =1 (76)
% +ala - 1)E2 = BB-1)¢2, ¢>0.

In particular, we have f”(¢) ~ €72 when &€ — 0 and since 1 < 8 < 2 this integral converges.
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Finally, we remark that for the next value n = 3, by the expression (74) we formally have

_ L3 1 T omine 3 ()
Kapltz) = rir)® | (2min)? (/_ e (e )dg ’

o0

but the last integral diverges. Indeed, to study this integral we need to compute f”/(£) and we have

" _Ca(_g)aig +c (_£)ﬁ737 f < 07
7€) = ’ (77)
Cat™ 3= cgh3, €50,

By the expression (77) we observe that f(3) (&) ~ €573 when ¢ — 0, and since 1 < § < 2 this fact
yields (72). We thus obtain |K, g(t,z)| = W“LI((%

e The case 2 < 5. By (74) (with n = 3) we can write:

L3 1 +o00 ori B
I _ rizg 93 (o~ F(E)t .
ap(t,7) rir)? | (2min)? ( /_ e (e )dﬁ

o0

where by the expressions (73) and (76) we always have Ly = —4it # 0. Then, by the identity (74)
(with n = 3) we obtain

|K IB(t x)| . —44t n —1 /+Oo 627ri z§83 (e—f(f)t>
a, 5 = . .
(2mix)®  2mix)d J_o ¢

_ @) 1(2)]

’x‘S - ‘x’min(ii,[ﬁ]—l-l)'

Proposition 4.1 is proven. |

Proposition 4.2 (The local dispersive effects I ) Let D = 92, where we have m(§) = —|¢|%. Let a >
B > 1 with o > 2. Moreover, we assume that o and [ are both even numbers. Then we have K, g(t,-) €

S(R).

Proof. Since o and 3 are both even numbers, and moreover, since m(¢) = —|£|2, the function f(&) given
in (25) verifies f € C®°(R). Consequently, by the good decaying properties of the function e~/(©)* when
€] — 400, we have e~ /(! € S(R). Then, always by (25) we conclude that Ko 5(t, ) € S(R). [ |

Proposition 4.3 (The local dispersive effects I1 ) Let D = 92, where we have m(¢) = —|¢|?. Let
a > [ >1 with a > 2. Moreover, we assume that a and [ are not both even numbers.

Fort > 0 there exists a quantity I(t) which verifies |I1(t)| < Cre™" with the constants C,m > 0 depending
on o and B, such that for x # 0 the following estimates hold:

I(t
1 If B > 0 is not an even number, we have |K, g(t,z)| = M7
’ |:L'|[5]+1
2 If B> 0 is an even number, we have |K, g(t,z)| = NG
’ A |l

where [B] and [a] denote the integer part of o and B respectively.

Proof. The proof essentially follows the same ideas of the proof of Proposition 4.1. Our starting point is
the expression (71) with the value n = [5] + 1:

K, p(t, ) _(271-1’551)[/5’]+1 ((_1)[5]+1 /0 2t 8£ﬁ]+1 (eff(f)lf) de + <e2mx§ agﬂ (ef(g)t))’(ioo)

+ (2m’a;1)[5]+1 <(_1)[5}+1 /0+°° 27 7€ agi]ﬂ (e—f(g)t> e + <62m'z§ aéﬁ] <eff(§)t>) ‘;“) .
(78)
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In order to study the study the terms

(e%mg op) (e_ f(@t)) “i B (ezmg o (e—f@)t)) )Zm 7

we need to compute the expression f(5) and we have

; =B8] L (—\Ble (—eya—1B] _ (Bl (—£)B-18]
FUBD(¢) = icg &+ (1) Pea(=¢) (=D)¥leg(=)P~ W, £ <0,
i05 53—[131 + ¢y ga—[m —cg fﬂ—[ﬁ]’ 5 > 0’

(—1)Bley (=€)l — (—1)[5]%(—5)5—[5], £<0,

1) =
co £07Bl —cgeP-IBl £ >0,

At this point, we shall consider the following cases of the parameter (3.

1. When $ in not an even number. Within this setting, we still need to consider the next sub-cases.

1.1 When S is an integer number. We thus have 8 = [3] where [3] is not an even number. Then, by
the expressions (79) and (80) we have

(emiz€ ol (@) 4 (mee ol (1)) = —2e5e 20

Consequently, we obtain

B —2cpt (=1)BI+1 oo omist A+ [ —fe)t
I(t
B I:L\[(m)+|1v [1(1)] < Cen.

1.2 When f is not an integer number. In this case we have [5] < 8 and by the expressions (79) and
(80) we obtain

(ezm‘zg 8€[ﬁ] (e—f(g)t)> ‘0_00 n (e2m'a:€ 8?] (e—f(f)t>> ‘;roo =0.

Therefore, we can write
(D!

_ @) mt
(27 iz)lAI+1 B (0] < Cem

[ Kap(t,z)| = ECEE

/Jroo e2mi g 8£,8]+1 (eff(é)t> d¢

Moreover, we remark that we cannot continue the iterative process described in (71) with the next

step n = [B] +2: the resulting integrals involve the expression 8%5 1+2 (e‘f (f)t), which contains the

term fUA+2)(¢). But, by a simple calculation, from the expressions (79) and (80) for [5] +2 = 3
we have

e £3-1B1+2) 1 (—)WBle, (=)o 1B1=2 — (—1)B1+2¢ 5 (—g)B-1A1-2 0
s - [Fr€ T+ (DP9 (~1)+2e5(—€)P 192, ¢ <o,
icg g3=(B1+2) 4 ¢ g B2 _ cs B-B1-2 ¢ 50,
and for 4 < [3] 4+ 2 we have
—_BIH2. (—gye—B1=2 _ (_1)[BlH+24,(—g)B—[B]-2
f ()
ca £07PI72 g eB-IB1-2 0 £ 50,
In both cases we get that f(5+2) (&) ~ €8-18=2 when € — 0. Consequently, these integrals are

not convergent.
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2. When 3 is an even number. We get back to the expression (78) and since [ is an even number the
expressions (79) and (80) write down as:

icg& P +ca (62 —cs €<0,
P©O=9 1<p<3,
icg 3P tca P —cg €>0,

a\ ™ a—,B - 9 Oa
forg = YT e f<0 g
&P —cz, £>0,

Therefore, we obtain

(emggg aéﬂ] (e—f(g)t)) ‘O_OO n (ezng agﬁ] (e—f(g)t>> ‘;roo _o,

and we can continue with the iterative process described in (71) until the step n = [a] + 1 to write

Kap(t,z) = Wl)[am <(_1)[a]+1 /0 2miat 3§[a]+1 ( —f(8) > dé + <€27rix£ 3204 (e—f(é)t>> ‘(ioo>
N (%ml)[a}ﬂ ((1)[a]+1 /0+°O o2miat ag[aHl (e_f(g)t> dé + <€27rix§ 8?} <e—f(g)t))‘;°°) .

From this identity and by following the same arguments detailed at the points 1.1 and 1.2 above (with

1
« instead of ) we finally obtain |K, g(t, z)| = | | |[(t})+|1, with [I(t)] < Cem*.
T (03

Proposition 4.3 is proven. [ |

Summarizing, by the pointwise identities proven in Propositions 4.1, 4.2 and 4.3, and by the parameter
n > 2 defined in the expression (13) we obtain the unified identity (18). Proposition 2 is now proven. W

As a corollary of this identity we can easily estimate the kernel K, g in the LP— norms, for both the
nonlocal dispersive (when D = H3,,) and the local dispersive (when D = —92) cases.

Proposition 4.4 Let o > > 1 with o > 2. For allt > 0 fizxed, and for 1 < p < 400 the following estimate

hold true:
emt

| Ka,5(t)|[r <C

1 >
[e3

where the constants C' > 0 and 1n1 > 0 depend on «, B and p.

Proof. For t > 0 fixed, we start by estimating the quantity || K, g(t,-)|r>. We recall that f(§) = im(£)§+
(J€]* = 1€]7) (with m(€) = [£] or m(€) = |€]?) and since o > § for M > 0 big enough we can write

1Kt Ve < C lle O 0 < g/ €—<s|a—5|3>td§+c/ (el =1t g

<M l€l>M
1
o aelt mt
gc/ e"fﬁtdﬁ—kC’/ ekl fdggce"t+91 < cit - +1 <0oS .
<M [>M to to to

We thus have
em 1t

[Kap(t, e < C (81)

1
On the other hand, we estimate now the quantity || K, g(t, )| p1:
[Kaplts = [ Kapltaldet [ |Kap(to)ldo < CKaplt)om+ | Kaslt,z)de
|z|<2 |z|>2 lz|>2
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The first term on the right-hand was already estimated in (81). On the other hand, by (18) we have

d
/ | Ko p(t, z)|dx < Cet / . < Cent, (82)
|z[>2

|z|>2 ‘x|n
We thus obtain || K, g(t, )1 < G 4+ Cent < C <= e’
H ta

Finally, the quantity || K4 g(t, )|, with 1 < p < 400, follows from the standard interpolation inequal-
ities. Proposition 4.4 is proven. |

To close this section, remark that by the identity (18) and by the estimate ||Kq (¢, )|l < C e:f

proven above, for t > 0 and x € R we have the following pointwise estimate:

nt 1

This estimate will be very useful in the following section.

4.2 Spatial pointwise decaying
Proof of Theorem 4

Given an initial datum ug € H*(R), with s > 3, we assume now that the it verifies ug € L>((1+| - |¥)dz),
with k > 1. Then, for a time 0 < 7" < 1 we will construct a solution u(¢,x) of the equation (27) in the
following Banach space

Er ={ueC([0,T],H*(R)) : ||ul]lr < +oo}, (84)
where the norm || - ||z depends on the parameter r, the parameter «, the parameter n given in (13), and
moreover, it also depends on the previous norm || - ||s.q,0 (defined in (42)) as follows:

HUIIT—HUHWOJr S taH(1+| (3 )I!Loo+ S t@H(lﬂ D) Dt ) L. (85)

In this expression, the first term norm || - ||o,s0 Will allow us to control in the space H*(R) each term of
the nonlinear part of the equation (27). The second term characterizes the spatially decaying properties of
solutions, while the third and the fourth terms are meant to treat the (more delicate) nonlinear term (9,u)?.

Finally, the weights in the temporal variable to and te are essentially technical (due to the kernel estimates
(83)) and they will be useful to carry up all our estimates.

Let us start by studying the linear term in the mild formulation (27).

Proposition 4.5 We have K, g *ug € Er and || Ky g * uollr S (||tol|as + (1 + |- |*)to]| o).

Proof. We must estimate each term in the norm given in (30), but recall that the first term was already
considered in (43), and consequently, we shall focus on the second and the third term.

For the second term, since ug € L>((1+4|-|")dx) and moreover, by the kernel estimate (83), for 0 <t < T
and x € R fixed we write

1+ |ylf
|Kap(t, ) % uo(a)]| < / K gt — )| [uo(y)ldy < / [Kapltz —y)li+ }y:mo(y)rdy
]Kag (t,z —y)] eon't dy
<X+ [")uo L°°/ —————=dy S |[(1+ |- |®)uol e
| | el 1G4 Puolle~ ~ | A e =y +
e’?ot

<
S+ ol Hmmm,m
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hence we have

1 .
sup ¢ |[(1+ [ 0 Kty ) o S+ |- 7)ol oo (86)
0<t<T Lee

For the third term we shall need the following technical lemma, which was essentially proven in [8,
Lemma 4.2]:

Lemma 4.1 Let a > > 1 with a > 2. Let K, g the kernel given in (25) with m(€) = |€| or m(§) = —[¢]2.
Moreover, let n > 2 be the parameter defined in (13). Then for t > 0 we have K, (t,-) € CH(R) and the
following estimates hold:

6771 t

1. Forallx #0, |0:Kqp(t,x)| < Cw-

enlt 1
2. For all x € R, \@«Ka”@(t’l’)’ <C t% W’

for two constants C,n1 > 0 which depend on o and 3.

By the second point above and by following very similar estimates done to prove (86) we obtain

sup ¢4 [[(1 [ [P0, (K p(t, ) o) S0+ 1)l noe- (87)
0<t<T Lee
Thus, the wished estimate follows from (43), (86) and (87). Proposition 4.5 is now proven. [

We study now the nonlinear term in the mild formulation (27). For the sake of simplicity, we shall only
consider the case 71 = 72 = v3 = 1 with a > 7/2. The other case: 71 = 1, 72 = 3 = 0 with a > 2,
essentially follows the same estimates with the obvious minor modifications.

Proposition 4.6 Lat o > %, 5> % and let n > 0 be quantity given in (31). Define 0 < e < min(n, 1 — %)
Then the following estimate holds:

Proof. We get back to the definition of the norm || - |7 given in (85), where we must estimate each term in
this expression. We recall that the first term || - ||5,o,0 was already estimated in (44); and for the quantity
n > 0 given in (31) we have

For the second term, the following estimate holds:

/OKaﬂ(t—r,-)*(ax(u2)+8§(u2)+(8xu)2) (r,)dr|| < CT™ |ul3.

T

ST ||ull7. (88)

s,a,0

/t Kot —m,-)* <8$(u2) + 8§(u2) + (8xu)2> (1,-)dr
0

ST % ul3. (89)

1 i !
sup to H(l + | ) |m1n(n,n))/0 Ka,ﬁ(t -7, ) * (8z(u2) + 8§(u2) + (axu)2)(7', -)dT -

0<t<T

Indeed, to estimate the expression d,(u?), for t > 0 and = € R fixed, by the kernel estimate (83) and by the
first and the second expressions in (85), and moreover, by recalling that s > % and we have the continuous
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embedding [0,ull = S [|uls-, we write

/0 Kaﬂ(t - T, ) * az(UQ)(7-> 33)

t
< /0 /]R |Ka,ﬁ(t — T, — y)Hu(t, Z/)||3yu(7, y)|dy dr
Sllu ent/</ - dy) Oyu(r, )| Lo dr
H ||T 0 (t — T)é Té r 1+ |x — y|n 14 |y|m1n(n,n) || Y ( )H

t 1 1 1 1
Slullge™ | —— — . dy | dr
~ 0 (t—7)a 7o \Jrl+|z—y[" 1+ [y |min(sn)

-
14+ ‘x’min(n,z)’

Q=

Sluflfene =+
. . . 1 min(k,n) K 2 1—-1 2
which yields the estimate sup to |[(1+]-]| Y | Ko gt —7,0) % 0p(u®) (7, -)dr ST o ||ullf.
0<t<T 0 L=

To estimate the expression 9%(u?) we remark that we can write K, g * (92(u?)) = 0, Ko * 2 (udyu). By
the second point of Lemma 4.1, we obtain

/0 Kag(t—7,) % () (r,z)

t
< /0 /R 00K p(t — 7.2 — )| ult, 1) ||8yur, y)\dy dr

Lo 1 1 1
< il — = . d 0 | zoed
St [ = = ([ g e ) 1ot e

1
1+ |x|min(/€,x) ’

SlulZ emteatt

2
ST% ulz

t
We thus have sup ta H(l + - \mm(k’n))/ Kap(t—7,°) % a%(“%(ﬂ -)dr
0 Lo

0<t<T

Similarly, for the expression K, g * (0yu)? we just write K, g (9yu)? = Kq g * ((0yu)(0,u)) and we have

t
(1+|'!min(’“’”))/ Kog(t—7,) « (Quu)(r,)dr| ST [lul.
0

Lo

1
the estimate sup te«
0<t<T

Finally, we recall that since 0 < T < 1 we have T -3 < Tlfé; and we thus obtain the wished estimate
stated in (89).

For the third term in the norm || - ||z (given in (85)) we essentially follow the same arguments exposed
above to obtain the estimate

2
sup to
0<t<T

3
ST [|ull7.

(14 | - in(entd)) /t Ko gt —7,°) % (0 (u?) + 02(u?) + (Opu)?)(, -)dr
0

L= (90)

Indeed, for the reader’s convenience, we shall only mention that to treat the expression 92(u?) we write
0:Kap * 02(u?) = 0, Kap * (0pu)? + 0, Ka 3 * (uO?u). Here, to control the last term 02u we use the
continuous embedding [|0%ul|ze < ||ufl =, which is valid for s > 3.

To finish the proof, we set 7o = min(n, 1 — %) from which we get the desired estimate. Proposition 4.6
is proven. |

32



With Propositions 4.5 and 4.6 at our disposal, there exists a solution u € E7, to the equation (27), for a
time 0 < Ty < T' < 1 small enough. But, by the embedding E7, C C([0,Tp], H*(R)) and since the equation
(1) is locally well-posed in this space (in particular we have the uniqueness of the solution) this solution is
the same to the one constructed in Theorem 1.

Until now we have proven the estimate (15) for all time 0 < ¢ < Ty. Thereafter, by following the same
arguments of [8, Theorem 4.2] this estimate is extended to the time 7. Theorem 4 is now proven. |

4.3 Asymptotic profiles and optimality

Once the problem of the spatial pointwise decaying of our problem (1) is finished, our next objective is to
show in which cases we could speak of optimally of this decaying. To do this, we will start by giving an
asymptotic profile of the solution in spatial variable, of problem (1).

Proof of Theorem 5

Since the solution u(t,z) writes down as in the integral formulation (27), we start by proving that the first
term on the right-hand side in has the following asymptotic development:

Ka,ﬂ(tﬂ ) * UO(‘T) = Ka,ﬂ(tvx) </]R UO(y)dy> =+ Rl(t7x)) ‘$| — +00, (91)

with |Ry1(t,x)| = o(t) (1/|x|"). Indeed, for ¢ > 0 and x € R fix this term can be decomposed as follows:

/R Kot — y)uo(y)dy = Ko p(t, z) < /R Uo(y)dy> + /y|<|z2|(Ka,B(t, v —y) — Kap(t, 2))uo(y)dy

+ /|y>; Kop(t,x —y)uo(y)dy — Kap(t,z) </|y>§ uO(y)dy) (92)

e ([ nnt) 15 1 1
R

hence, we define Ry = I; + I> + I3 and we will verify that the following statement holds:

c(up, t)
’x‘n—ke )

|R1| < |z| — 400, e > 0. (93)
To estimate the term I; we need the Lemma 4.1. Since K, 3(t,) € CH(R), we write K, 5(t,z —y) —
Ko p(t,x) = —y 0. K, 5(t,x — 0y), for some 0 < § < 1. Then, by this identity and using the first point of
Lemma 4.1 we get

o [ll0: Ko 5(t & — 0y)[uo(y)|dy

hos [ (aptta =) Kapttaliw(ldy < [
yl<3

S ecnlt/ ’yHuO(y)‘ dy
)

<Lzl |z — Oy +t

1
We study now the expression w As we have 0 < 6 < 1, and moreover, as we have |y| < %,
Tr—0vy
1 1
then we can write |z — Oy| > |z| — Oly| > |z| — |y| > ‘2&'; and thus we get < With this

’w _ Gy‘n-i—l ~ ‘x’n-i-l'

inequality and recalling that the initial datum verifies |up(y)| < (with K > n), we can write

1+ [yl
@Cmt/ ]yHug(y)\ dy< efm't / |y‘ dy< efm t
i<l [z = Oyt et el T fyle T et
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hence we have

ecnlt
For the term I, as |up(y)| < % (for |y| large enough) and moreover, as we have |y| > “;—l, then we write
Y
K.tz — 1
bos [ Kastta-pluowiays [ ety g LT s - )
>l jyl>'3! ly|” el Syt

1
S WHKa,ﬁ(ta Nz,

cny t

but, by Proposition 4.4 we have || Ky 5(t,-)||11 S etl

, and for kK > n we get

emt 1
L <-—
Yol

|z| — +oo. (95)

Finally, in order to study the term I3, recall first that by the estimate (83) for |z| enough enough we have
emt ]
|Kop(t,z)| S e—lw Moreover, recall that the initial datum verifies |ug(y)| < T (with Kk = n+e¢).
ta |Z Y
Then we write

efmt 1 emt 1 1
PP N S B R B
ta |z s lal ta |z[" Jyslal 14 [y|mre
cpq t cpq t cpq t
S e | S e L s e 09
ta || wi>12l 1+ [yl to |7l r 1+ |yl to |7l

Thus, the desired estimate (93) follows from (94), (95) and (96); and we have the wished profile given in
(91).

Now, we focus on the nonlinear term on the right-hand side of the equation (27). The first and the
second nonlinear terms: 9, (u?) and 92(u?), can be estimated as follows. For ¢t > 0 and z € R fix we write

t t
" / Kog(t —7,-) % a(u2) (- 7)dr = 71 / / Oy Kot — 7,1 — y) u2(r,y)dy dr = (a).
0 0 R

1

Then, by the second point of Lemma 4.1, and moreover, since by (15) we have |u(, y)|2 S Wa
Ta (1+ |y|="

then we get

() S / e / ! L _ayd
a) s MNn yart
0 (t—T)% 7o Jr 14|z —ytil+ [y

Cnlt/t 1 d </ 1 1 d >
Y€ — 3 3z 4T Y
0 (t—T)arTa R 1+ |z —y 1+ [y

7160"1t /t ! 1 .
0 (LL—T)%T% 1+ ||t

t
As « > 2, this integral computes down as / (
0

N

N




On the other hand, we write

t t
" / Kop(t—7,) % 2@, m)dr = / / O Ko p(t — 7,3 — y) u2(7, y)dydr
0 0 R

- t ec"ll(t_T) 1 1
~ / El 2/1+|x_ |n+21+‘|2ndyd7-
0 (t—T)aTa R Yy Yy
t
1 1 1
Sy — )
0 (t—T)%T% R 1+ |z —y["T2 1+ [y
t
1 1
S efmt / 3 s
0 (t—7)aTa ) 1+|2|

dr < ¢
)S/a 72/ = ¢5/a—=1"

Finally, we must study the third nonlinear term (0,u)2, which must be treated differently from the
previous ones.

t
As a > I, then this integral computes down as
2 0 (t — T

Remark 4 When studying this nonlinear term in the same fashion as the previous ones we obtain the

t

d

integral / (7)—14, which converges as long as o > 4. But this constraint excludes the physically
0 (t—7T)aTa

relevant value a = 4.

Remark 5 The more precise analysis on the term (0yu)? which we shall perform will allows us to prove an
interesting optimally criterion of the pointwise decaying of solutions.

We shall prove the following identity:

t t
/ Koeﬁ(t_T") *73(axu)2(7—") dr =13 Kaﬁ(t7x)/ HU(T, ')H?’{ldT—FRQ(t?x)a |‘T| — +o0, (97)
0 0

with |Ry(t, )| = of(t) < !

Hn> Indeed, we follow the same ideas of the identity (92) to write
x

t t
73/ Kog(t =7 a)  (Opu)X(r, ) dr = 73/ Kap(t = 7,2) Ju(r, )%, dr + Ji(t) + Ja(t) + J(t),
0 0

where

Ji(t) = —73/0 /| <l (Kap(t =10 —y) — Kop(t — T, x))(ayu)Q(% T)dy dr,
yl<5

20 =55 [ [ Kt =me =)@y dr

and

Jg(t) :’yg/o Kaﬂ(t—T,:E) (/H " (8yu)2(7', y)dy) dr.
Y>35
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Moreover, we write
0 [ Kaalt =7 5 @), a)

=38 K 3(t,0) /0 ol Wt = Kents2) [ W e+ [ oot =t i
+ Ji(t) + Ja(t) + J3(2),
— (0 + )+ )~ [ (Kaslt,) — Koplt — 7,0, )
=Ji(t) + Jo(t) + J3(t) + Ju(?).
As before, we we define Ry = Ji(t) + Ja(t) + J3(t) + Ju(t) and we will verify that the following statement
holds:

c(u,t)
< e

|Ra| < e>0, [z]—> +oo. (98)

By an analysis similar to the one done above, for the term J;(f) we have
0 5 [ [ st = s =) = Kl = )@y o
lyl<i2!

S [ [ W0t~ i~ 09) @02, )y i
0 Jyl<F

t cn, (t—T7) 2
Y Ly g L P
0 (t—71)a Jly<ll |z —0y|
t jcp, (t—7)
V3 / n / |y 2
S — | (Oyw) (7, y)|dy dr
2" Jo (£ — r)a Jpy<let T+ [yt
tecny (t— T)
Y3 / "1 2
S (T, )3 dT.
Ty onpr
Hence we obtain Clt)
, U
D) < T el - e (99)
e 1

(for |y| large enough) and moreover,

since |y| > %, then we write
t
w0 | [ g Valt =75 = (@) 7
ly|>

Kop(t—1,2—1y) [(Opu)(T,
<73// 5( n+1) ICDIGTIY
y|>|l ‘y|

1
S [ e ate =l Nt e
0
t
V3 / 1 1
N — —— ||w(7)|| 1 dT.
lz[" L Jo 72 (t—T)é Ht
We thus have )
U
Jo(t) < P |x| — +oo. (100)



In order to study the term Js(t), recall first that always by (83) for |x| enough enough we have the estimate
Ccyq t 1

| Ko p(t,z)| < C%W' Then we write
ta X

N

t cng (t—T) 1
3 el
() < / / @) y)ldy )dr
[ Jo & ( > L2l 1+ [y )

t cn, (t—T)
3 /6"1 (/ 1
< ——((0zw))(T,y dy)dT
i fy 7 Uy Trge )
t ey, (t—T7)
73 e
< M o dr.
S i [ e
Hence,
C(t,u)
J3(t) < P |z| — 4o00. (101)

Finally, we must estimate the term Jy(t). We use the mean value theorem (in the time variable) and for a
time t — 7 < 7 <t we write

t
Ja(t) 573/ | Kap(t,z) = Kap(t = 7.2)| u(r, )G dr
0 (102)

t
< [ 10rKas(r o) I fur, )l dr
0
At this point, we need to estimate the expression |0 K, g(71,)]:

Lemma 4.2 Let a > > 1 with a > 2. Let K, g the kernel given in (25) with m(£) = €] or m(§) = —|¢]?.
Moreover, let n > 2 be the parameter defined in (13). For t > 0 the following estimate hold:

nt

e
|atKa75(t,l')| S Cw, |33| — +OO, (103)

for two constants C,n1 > 0 depending on o and (3.

Proof. Recall that the kernel K, g(t, ) solves the equation (17) and for ¢ > 0 fixed we can write
0K o 3(8,2)] < 1D(OpK o plt,2)| + DS Ko (t,2)] + DI Kt 2)].

Each term on the right-hand side is essentially a derivative of the Kernel K, g(t,x) in the spatial variable.
Consequently, by following the same ideas in the proof of [8, Lemma 4.2], for = # 0 we get the following
estimates

Cigrs,  mU&) = [€],
C s, ml&) = —I€1%,

6771 t

a
’DxKavﬁ(t’ x)’ S C ’1"n+[a] )

|D(8:L"Kaﬁ(t7l’))| <

and
emt

(¢4 —

where, as before [o] and [5] denote the integer part of the parameters a and 3. Thereafter, recall that a > 2
emt
| x|n+1

obtain the wished estimate (103). [

and § > 1. Then, each expression above is controlled by the term C when |z| — +o0; and we thus
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Once we have the estimate (103), we get back to the estimate (102) to finally obtain

t C(t
Ta(t) S =2 / 7 | e, Y [Badr < BEEW (104)
0

~ JerH > e

With the estimates (99), (100), (101) and (104) at our disposal, we obtain the wished identity (97). This
identity together with the identity (92) yield yield the asymptotic profile (91). Theorem 5 is proven. [

Proof of Corollary 1

By the asymptotic profile (19) and by the identity (18), for ¢t > 0 fixed and for |x| large enough we write

u(t, )] = ‘Ka,ﬁ(tafb) [/Rtm(y)dy+73 /Ot [[u(T, ')Ilindf} + R(t, x)

> Kot 2)] \ / uo(y)dy + 73 / lu(r, |3 dr| - |R(t,2)| (105)
) o )
[ oy s [t | ~ 166, 2)L

Recall that |R(t,z)| < TQ‘EEQ with 0 < ¢ < 1 (hence we have |R(t,z)| = o(1/|z|")) and for the quantity

LZ\ ’fR uo(y)dy + 3 fo [ ( ,-)||12L-Ild7“ > 0 there exists M > 0 such that for |x| > M we have

1

I(t t
‘R(t,ﬂfﬂ = H2)| ‘/Ruo(y)dy+73/0 ”U(T, )H?’{ldT ’3}‘”

We get back to the previous estimate from below to obtain

'\/ dy+73/\lu IR, dr

O [
Cg(UO,"}{;,t,U) - 2 ]RUO(y) Y+ 73 0 HU’(T7)”H1 Tl

1
| o < |u(t,z)|, |z|— +oo,

hence we set

(106)

Corollary 1 is proven. |

Proof of Corollary 2

The proof follows very similar ideas of the previous proof. Indeed, in the case v3 = 0 and [, uo(y)dy # 0 by
the estimate (105) and for |z| large enough we have

I(t 1
PO [ wotwds| o < futt, ),
2 |Jr [a]
where we set the quantity
I(t
catuont) = | [ oty (107)

On the other hand, in the case v3 = 0 and fR uo(y)dy = 0 by the identity (19) we obtain the estimate
(24). Corollary 2 is proven. [
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Appendix

A proof of the identity (62). First, we recall that the bilinear for B(-,-) is given in (45). Moreover, for the
sake of simplicity, we shall write K, g(t,-) * ugp = tp(t,-) and K, g(t,-) * vg = vo(t, ). Then, we have

t
g(t,€) = /0 e 1O F (B(do, 0o)) (r,€) dr
t —~ ~ — o~ —_ ~
= /0 e FO)(t=7) (’yl & (o * Vo) — Y2 52(u~0 % U0) + v3(i&up * i§170)) (1,8)dr

t
— / e~ f(E(t=7) ((’71 i€ — 2 £2) /ef(é—n)faa(g — 1) D75 (n)dn
0 R
(€= e T E el Gty ) ar

t
= /0 e~ /=) /R (1 = 72 € = 13(& — mn] e TEDT eI DTG(E — ) o (n)dn dr

t
= /]R [y18€ — 79 €2 — (€ — m)n] @& — n) 5o(n) </ e FOt=7) —f(E=m)T e—f(n)rdT) dn.

0

where, the integral in the time variable computes down as

t _ _f(e— _
j/ —HO—7) o~ F(Em)r o~ fnr g, _ €T TIETI - eZ O
0 &) = f(n) = f(€—n)
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